
Python Tkinter By Example

David Love

January 18, 2018

Contents

0.1 Introduction . 5
0.2 Who this book is aimed at . 5
0.3 How to get the most out of this book . 5
0.4 About tkinter . 5

0.4.1 Installing . 5
0.4.2 What is it anyway? . 6
0.4.3 Why write about tkinter? . 6
0.4.4 I heard tkinter is ugly . 6

1 Hello World 7
1.1 Basic Example . 7
1.2 Using Classes . 8

2 A To-Do List 9
2.1 A Basic List App . 9

2.1.1 __init__ . 10
2.1.2 add_item . 11
2.1.3 Next Iteration . 12

2.2 Scrolling and Deleting . 13
2.2.1 Canvases and Frames . 15
2.2.2 __init__ . 15
2.2.3 Handling Tasks . 15
2.2.4 Adjusting the canvas . 15
2.2.5 Mouse scrolling . 16
2.2.6 Next Iteration . 16

2.3 Permanent Storage . 17
2.3.1 runQuery . 19
2.3.2 firstTimeDb . 19
2.3.3 __init__ . 19
2.3.4 add_task and remove_task . 19
2.3.5 save_task and load_tasks . 19
2.3.6 The final app . 19
2.3.7 Further Development . 19

3 A Multi-Language Translation Tool 21
3.1 A Single-Translation Interface . 21

3.1.1 requests . 23
3.1.2 __init__ . 23
3.1.3 translate . 24
3.1.4 copy_to_clipboard . 24
3.1.5 Next Iteration . 24

3.2 Three Tabs and a Menu . 25
3.2.1 __init__ . 27
3.2.2 translate . 27

2

CONTENTS 3

3.2.3 add_portuguese_tab . 27
3.2.4 Next Iteration . 28

3.3 A Truly Dynamic App . 29
3.3.1 The LanguageTab . 29
3.3.2 The TranslateBook . 30
3.3.3 NewLanguageForm . 32
3.3.4 Running this version . 33
3.3.5 Further Development . 33

4 A Point-and-Click Game 34
4.1 The Initial Concept . 34

4.1.1 GameScreen . 37
4.1.2 Game . 37
4.1.3 Playing the Game . 38
4.1.4 Next Iteration . 38

4.2 Our Refined Point-and-Click game . 39
4.2.1 GameScreen . 41
4.2.2 Game . 42
4.2.3 Further Development . 43

5 Ini File Editor 44
5.1 Basic View and Edit Functionality . 44

5.1.1 __init__ . 47
5.1.2 file_open . 47
5.1.3 parse_ini_file . 47
5.1.4 display_section_contents . 48
5.1.5 file_save . 48
5.1.6 Next Iteration . 48

5.2 Now With Caching and Resizing . 49
5.2.1 __init__ and frame_height . 50
5.2.2 parse_ini_file . 50
5.2.3 display_section_contents . 50
5.2.4 file_save . 51
5.2.5 Running . 51
5.2.6 Next Iteration . 51

5.3 Our finished Ini Editor . 52
5.3.1 CentralForm . 54
5.3.2 AddSectionForm and AddItemForm . 55
5.3.3 IniEditor . 55
5.3.4 Further Development . 55

6 A Python Text Editor With Autocomplete and Syntax Highlighting 56
6.1 Basic Functionality and Autocompletion . 56

6.1.1 __init__ . 59
6.1.2 Handling Files . 59
6.1.3 Autocompletion . 60
6.1.4 Spaces over Tabs!? . 61
6.1.5 Next Iteration . 61

6.2 Syntax Highlighting . 62
6.2.1 __init__ . 64
6.2.2 Regexes Explained . 64
6.2.3 file_open . 65
6.2.4 tag_keywords . 65
6.2.5 display_autocomplete_menu, number_of_leading_spaces, and on_key_release . 66

4 CONTENTS

6.2.6 Next Iteration . 66
6.3 Our Finished Editor . 67

6.3.1 FindPopup . 71
6.3.2 Editor . 72
6.3.3 The Finished Product . 74
6.3.4 Further Development . 74

7 A Pomodoro Timer 75
7.1 A Basic Timer . 75

7.1.1 Timer . 78
7.1.2 CountingThread . 79
7.1.3 Next Iteration . 79

7.2 Keeping a Log . 80
7.2.1 Timer . 82
7.2.2 LogWindow . 82
7.2.3 Next Iteration . 83

7.3 Our Finished Timer . 84
7.3.1 Timer . 86
7.3.2 LogWindow . 87
7.3.3 Further Development . 87

8 Miscellaneous 89
8.1 Alternate Geometry Managers . 89

8.1.1 Grid . 89
8.1.2 Place . 90

8.2 Tk Widgets . 90
8.2.1 Checkbutton . 90
8.2.2 Radiobutton . 90
8.2.3 Checkbuttons and Radiobuttons in a Menu . 90
8.2.4 OptionMenu . 91

8.3 Ttk Widgets . 91
8.3.1 Combobox . 91
8.3.2 Progressbar . 91

8.4 Final Words . 92

0.1. INTRODUCTION 5

0.1 Introduction

Thank you for taking an interest in my book. Its purpose is to teach you everything you should need to
know to begin using Tkinter in Python 3. Examples in this book cover Tkinter 8.6 in Python 3.6. If you
wish to follow along using Python 2, there shouldn’t be too many differences, but keep in mind I haven’t
tested the code for compatability. The main thing to note is that the module is likely called Tk i n t e r
(capital T), but in Python 3 it is t k i n t e r (small t).

Each chapter of this book is written in the form of an image of the target application with the app’s
entire source code, followed by a breakdown and explanation of the code. Each example is included to teach
a specific topic (or a bunch of related ones). Apps are developed iteratively, with each step adding a new
feature and teaching a key part. Code which has not changed from the previous iteration will be condensed
with ellipses (...) for brevity. I have also included some exercises at the end of each chapter for anyone who
wishes to practice development by themselves.

0.2 Who this book is aimed at

This book is written for anyone who knows python and wants to learn a bit about developing GUI applications.
Whether you’ve got a command line application you want to make friendlier with a GUI or you have a great
idea for a GUI app which you want to get started on, this book will hopefully give you the tools you need
to begin writing your own tkinter apps from scratch.

I will assume that you have basic knowledge of python programming already, and will not explain things
like installing python, running programs, or basic syntax (things like i f , f o r loops and such). At the same
time, you will not need to be an expert to follow along either. I would suggest learning about C l a s s es if
you aren’t already aware of them, as all of the examples are written using a class.

I hope you are able to learn something interesting from this book. Should you have any questions, feel
free to contact me. I’m @Dvlv292 on Twitter and Dvlv on Reddit.

All source code from this book is freely available on my Github at http://github.com/Dvlv/Tkinter-By-
Example.

0.3 How to get the most out of this book

The best way to ensure that the knowledge from any programming book really sticks in your mind is to
write out the code for yourself. You can do this whilst reading the section or after finishing the explanation;
it doesn’t really matter. The important thing is that you code along with the book. Reading the code can
only get you so far - you need to practise, practise, practise!

Don’t just follow along either. If you wonder "what if I change this" or "couldn’t I do it like that?"
then just do it! If you mess up, just start again, or grab the code from Github and "reset" back to where
you were. You cannot go wrong.

0.4 About tkinter

0.4.1 Installing

Tkinter is probably already installed alongside python. Some Linux distros may not include it, so you might
have to look for python3−t k i n t e r in your package manager. Check by running python in a terminal
and trying to do>>> impor t t k i n t e r .

6 CONTENTS

0.4.2 What is it anyway?

Tkinter is a GUI library. It comes with everything you would need to begin making GUI applications such
as buttons, text inputs, radio buttons, dropdowns, and more. Thanks to its inbuilt module ttk it also has
the ability to provide some advanced features like tabbed windows, tree views, and progress bars.

0.4.3 Why write about tkinter?

I have an unexplainable attachment to tkinter. I think it was the second python module which I began using
for a big project - after pygame - and so I just have some nostalgia towards it. Personal preference aside,
since tkinter is built into python as part of the standard library, it’s pretty much a go-to for new users who
want to try out making a GUI. There are no awkward dependencies, no licence issues, and in my opinion it’s
very easy to pick up and play with. There are lots of great StackOverflow answers for common problems
one may run into and the documentation isn’t bad either. I think tkinter is the easiest and best library for
those who are new to GUI development. Overall though, I’m writing about tkinter because I like it, and I’m
having fun writing the apps I’m developing specifically for this book.

0.4.4 I heard tkinter is ugly

It’s true that plain tkinter is not going to win any beauty awards. It’s old. The great thing is, tkinter
now comes with a module called "ttk" which provides widgets which look native on Windows and OSX
(tkinter itself looks very close to native on Linux already). Whilst this book doesn’t cover ttk until the last
project, after reading it you should be able to swap out the majority of widgets from earlier chapters to ttk’s
very easily. If you’re following along on Windows or OSX don’t be put off by the dated styling of tkinter’s
widgets; once you learn about using and styling ttk widgets in Chapter 7 you should grasp how to make
tkinter look great on all platforms.

Chapter 1

Hello World

1.1 Basic Example

As is tradition with all programming books, we’ll start with the classic Hello World example to introduce a
few things. This will pop up a small window with "Hello World" written inside.

1 import tkinter as tk
2
3 root = tk.Tk()
4
5 label = tk.Label(root, text="Hello World", padx=10, pady=10)
6 label.pack()
7
8 root.mainloop()

Listing 1.1: Hello World

We start with root=tk.Tk() which creates the overall tk window. Then we define a tk.Label() which
will hold our "Hello World" text. The first argument to a Tk widget is the parent in which it will be placed.
In this case, we will just put it directly within the root instance. The padx and pady arguments add padding
horizontally and vertically. label.pack() is then called as a way of placing the label into the root. Other
ways of placing widgets, such as grid(), will be covered later. Finally root.mainloop() is responsible for
showing the window.

Save and run this code and you should see a small window appear with "Hello World" inside, as show
here:

Figure 1.1: Our first Tk window

7

8 CHAPTER 1. HELLO WORLD

1.2 Using Classes

Whilst Tkinter code can be written using only functions, it’s much better to use a class to keep track of all
individual widgets which may need to reference each other. Without doing this, you need to rely on global
or nonlocal variables, which gets ugly as your app grows. It also allows for much finer controls once your
app gets more complex, allowing you to override default behaviours of Tkinter’s own objects.

1 import tkinter as tk
2
3 class Root(tk.Tk):
4 def __init__(self):
5 super().__init__()
6
7 self.label = tk.Label(self, text="Hello World", padx=5, pady=5)
8
9 self.label.pack()

10
11 if __name__ == "__main__":
12 root = Root()
13 root.mainloop()

Listing 1.2: Hello World as a Class

The main code here is the same as above. The rest is simply creating a Root class inheriting from Tkin-
ter’s Tk and running its mainloop function as before. I’ve also included the standard
if "__name__" == __main__ line for familiarity.

The label now belongs to the Root, rather than being an independent variable. This allows us to
reference it easily within methods of the Root class, such as an action we may bind to a Button, which
could otherwise be out of scope if we were not using a class.

Running this code should produce the same small window as in the first example.

Now we’ve covered the very basics of making a window appear, let’s dive in to something which can
actually be used.

Chapter 2

A To-Do List

In this chapter we’ll be creating a basic to-do list. Here we’ll learn about the following:

• Allowing the user to enter text

• Binding functions to keypresses

• Dynamically generating widgets

• Scrolling an area

• Storing data (with sqlite)

2.1 A Basic List App

Your first app should look something like this:

Figure 2.1: Our first To-Do App

9

10 CHAPTER 2. A TO-DO LIST

Let’s get right into the code for the first iteration.

1 import tkinter as tk
2
3 class Todo(tk.Tk):
4 def __init__(self, tasks=None):
5 super().__init__()
6
7 if not tasks:
8 self.tasks = []
9 else:

10 self.tasks = tasks
11
12 self.title("To-Do App v1")
13 self.geometry("300x400")
14
15 todo1 = tk.Label(self, text="--- Add Items Here ---", bg="lightgrey", fg="black",

pady=10)
16
17 self.tasks.append(todo1)
18
19 for task in self.tasks:
20 task.pack(side=tk.TOP, fill=tk.X)
21
22 self.task_create = tk.Text(self, height=3, bg="white", fg="black")
23
24 self.task_create.pack(side=tk.BOTTOM, fill=tk.X)
25 self.task_create.focus_set()
26
27 self.bind("<Return>", self.add_task)
28
29 self.colour_schemes = [{"bg": "lightgrey", "fg": "black"}, {"bg": "grey", "fg": "

white"}]
30
31 def add_task(self, event=None):
32 task_text = self.task_create.get(1.0,tk.END).strip()
33
34 if len(task_text) > 0:
35 new_task = tk.Label(self, text=task_text, pady=10)
36
37 _, task_style_choice = divmod(len(self.tasks), 2)
38
39 my_scheme_choice = self.colour_schemes[task_style_choice]
40
41 new_task.configure(bg=my_scheme_choice["bg"])
42 new_task.configure(fg=my_scheme_choice["fg"])
43
44 new_task.pack(side=tk.TOP, fill=tk.X)
45
46 self.tasks.append(new_task)
47
48 self.task_create.delete(1.0, tk.END)
49
50 if __name__ == "__main__":
51 todo = Todo()
52 todo.mainloop()

Listing 2.1: Our Initial To-Do Framework

2.1.1 __init__

We start off by defining our Todo class and initialising it with an empty list of tasks. If using a mutable
data-type, such as a list, always ensure you set the default argument to None and convert it into a list within
the __init__ method, as unexpected behaviour can occur if you try and pass an empty list in. The reasons
why are beyond the scope of this book, but you can find great explanations and examples online.

2.1. A BASIC LIST APP 11

Next off, we set the title and size of the window. The app can be resized after creation if the user
desires, so don’t worry too much about getting the initial size perfect. The main reason for this is to signal
to the user that the app should be vertically-oriented and prefers to be taller rather than wider.

A default task is added to our list to prevent it from just being a big blank space with a text box at
the bottom, and to hint to the user what will happen when a task is added. We do this by creating a
Label, adding it to our tasks list and packing it. The reason we use a loop to pack this item will become
clear when we introduce persistent storage in a later section of this chapter. The fg (foreground) and bg
(background) colours are set, and some vertical padding is added for aesthetics. The widgets are packed
to the TOP of the window, and are set to fill in the X direction, i.e. horizontally, to ensure they are all of
uniform width, and the background spans the entirety of the window.

The final widget we need is our Text box, which is what the user will type into. We shorten the default
height to 3 to make it look a bit nicer, and specify the white background with black text to look more like
traditional text inputs. After packing it at the BOTTOM of our window spanning the full X direction like our
tasks, we call focus_set so that the cursor is inside the box when the window is opened. Without this, the
user would have to click inside the box before they could type anything. We then bind the Return (or Enter)
key to a function add_item which we will get to next. A note when binding - do not put the parentheses at
the end of the function name. We want to pass the function itself across, but if we put the parentheses we
will end up calling the function instead.

The last thing to do is define our colour schemes. This is used to better separate individual items from
the list view. I’ve gone for light grey with black text, followed by darker grey with white text. Feel free to
switch these up to suit your preferences. You may notice the default list item has the styling of the first
scheme, so as to ensure it fits the pattern. The colour_schemes variable is a list of dictionaries containing
a background and foreground colour, which we will use to alternate the styles when adding new tasks.

2.1.2 add_item

When adding a new item, the first thing to do is get the text which the user entered into our Text widget.
The arguments here tell the widget how much of the text to grab. 1.0 tells it to begin at the first character,
and the END constant tells it to look until the end of the box. We also call strip() on the result to remove
the newline character which is entered when the user presses Return to submit the text, as well as any
trailing space characters.

We need to check if the length of the entered text is greater than 0 to avoid letting the user add blank
tasks. If this is true, then we create a new Label with the text entered by the user. The divmod function is
used to determine whether we are on an even or odd number of total tasks, allowing us to set the correct
styling to our new label. Divmod returns the quotient and remainder when the first argument is divided by
the second. In our case, we want the remainder when the size of our list is divided by 2. The quotient is set
to _, which is commonly used in python to denote a variable which we do not plan on using. The remainder
is then used as the index of our colour_schemes list to grab the correct foreground and background colour
dictionary. The configure method is used to set a property of a widget, just as you would pass the values
in as keyword arguments when creating them initially. We set the foreground and background colours of
our Label with the chosen dictionary’s values, and then pack it the same way as our default item. Finally,
we add this to the tasks variable so as to keep count of how many items we have.

We clear everything written in the Text widget outside of our if statement. This is to prevent the user
from adding newlines before their task name by pressing Return before typing anything. We also want to
clear it if they have entered a task, so they do not have to delete it manually before writing another.

12 CHAPTER 2. A TO-DO LIST

2.1.3 Next Iteration

That’s it for the first iteration of our to-do list! We now have a styled list of items which can be added
to. Whilst playing with this example, you will probably notice that if you add too many items, you need
to re-size the window to see any more. You also cannot delete any items which you may have completed.
These will both be addressed next.

2.2. SCROLLING AND DELETING 13

2.2 Scrolling and Deleting

A lot has changed from the previous iteration, so I will include the full code in this section. Your new To-do
app can be written as follows:

1 import tkinter as tk
2 import tkinter.messagebox as msg
3
4 class Todo(tk.Tk):
5 def __init__(self, tasks=None):
6 super().__init__()
7
8 if not tasks:
9 self.tasks = []

10 else:
11 self.tasks = tasks
12
13 self.tasks_canvas = tk.Canvas(self)
14
15 self.tasks_frame = tk.Frame(self.tasks_canvas)
16 self.text_frame = tk.Frame(self)
17
18 self.scrollbar = tk.Scrollbar(self.tasks_canvas, orient="vertical", command=self.

tasks_canvas.yview)
19
20 self.tasks_canvas.configure(yscrollcommand=self.scrollbar.set)
21
22 self.title("To-Do App v2")
23 self.geometry("300x400")
24
25 self.task_create = tk.Text(self.text_frame, height=3, bg="white", fg="black")
26
27 self.tasks_canvas.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
28 self.scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
29
30 self.canvas_frame = self.tasks_canvas.create_window((0, 0), window=self.

tasks_frame, anchor="n")
31
32 self.task_create.pack(side=tk.BOTTOM, fill=tk.X)
33 self.text_frame.pack(side=tk.BOTTOM, fill=tk.X)
34 self.task_create.focus_set()
35
36 todo1 = tk.Label(self.tasks_frame, text="--- Add Items Here ---", bg="lightgrey",

fg="black", pady=10)
37 todo1.bind("<Button-1>", self.remove_task)
38
39 self.tasks.append(todo1)
40
41 for task in self.tasks:
42 task.pack(side=tk.TOP, fill=tk.X)
43
44 self.bind("<Return>", self.add_task)
45 self.bind("<Configure>", self.on_frame_configure)
46 self.bind_all("<MouseWheel>", self.mouse_scroll)
47 self.bind_all("<Button-4>", self.mouse_scroll)
48 self.bind_all("<Button-5>", self.mouse_scroll)
49 self.tasks_canvas.bind("<Configure>", self.task_width)
50
51 self.colour_schemes = [{"bg": "lightgrey", "fg": "black"}, {"bg": "grey", "fg": "

white"}]
52
53 def add_task(self, event=None):
54 task_text = self.task_create.get(1.0,tk.END).strip()
55
56 if len(task_text) > 0:
57 new_task = tk.Label(self.tasks_frame, text=task_text, pady=10)

14 CHAPTER 2. A TO-DO LIST

58
59 self.set_task_colour(len(self.tasks), new_task)
60
61 new_task.bind("<Button-1>", self.remove_task)
62 new_task.pack(side=tk.TOP, fill=tk.X)
63
64 self.tasks.append(new_task)
65
66 self.task_create.delete(1.0, tk.END)
67
68 def remove_task(self, event):
69 task = event.widget
70 if msg.askyesno("Really Delete?", "Delete " + task.cget("text") + "?"):
71 self.tasks.remove(event.widget)
72 event.widget.destroy()
73 self.recolour_tasks()
74
75 def recolour_tasks(self):
76 for index, task in enumerate(self.tasks):
77 self.set_task_colour(index, task)
78
79 def set_task_colour(self, position, task):
80 _, task_style_choice = divmod(position, 2)
81
82 my_scheme_choice = self.colour_schemes[task_style_choice]
83
84 task.configure(bg=my_scheme_choice["bg"])
85 task.configure(fg=my_scheme_choice["fg"])
86
87 def on_frame_configure(self, event=None):
88 self.tasks_canvas.configure(scrollregion=self.tasks_canvas.bbox("all"))
89
90 def task_width(self, event):
91 canvas_width = event.width
92 self.tasks_canvas.itemconfig(self.canvas_frame, width = canvas_width)
93
94 def mouse_scroll(self, event):
95 if event.delta:
96 self.tasks_canvas.yview_scroll(int(-1*(event.delta/120)), "units")
97 else:
98 if event.num == 5:
99 move = 1

100 else:
101 move = -1
102
103 self.tasks_canvas.yview_scroll(move, "units")
104
105 if __name__ == "__main__":
106 todo = Todo()
107 todo.mainloop()

Listing 2.2: Our Scrolling To-Do

2.2. SCROLLING AND DELETING 15

2.2.1 Canvases and Frames

With this re-write, I have introduced some new components - a Canvas and two Frames. A Canvas is a
powerful general-use widget with many capabilities (usually graphical). We are using it here for its ability
to scroll, which we need if we want to add a lot of apps to our list. A Frame is a layout component which
can be used to group together multiple other widgets. As you will see in this case, we can actually use
the Canvas to draw a Frame into our window, which is then able to bundle together all of our to-do items,
allowing them to scroll independently of the Text widget we use to add new tasks.

2.2.2 __init__

As above, we now create a Canvas and two Frames, with one Frame parented to the canvas, and the other to
the main window. We then make a Scrollbar object to allow scrolling of the page. We set the orientation
and command to tell tkinter that we want a vertical scrollbar, scrolling in the y direction. We also configure
our canvas to accept the Scrollbar’s values. We once again set the window title and size, and create our
Text widget - this time parented to one of the frames (which will be packed to the bottom). Our Canvas
is packed with instruction to fill all available space and expand as big as it can, and our Scrollbar follows,
filling up the vertical space.

The next line looks a little strange. We use our Canvas to create a new window inside itself, which is
our Frame holding the tasks. We create it at the coordinates (0,0) and anchor it to the top of the Canvas
(the "n" here is for "north", so top-left would require "nw", and so on). One thing to note is that we do
not pack our tasks_frame, as it will not appear, and we will be left scratching our heads as to where it is.
This is something I learned the hard way!

After that, we pack our Text into its frame and then pack its frame to the BOTTOM of the window,
with both filling the X direction. The default task is created and we bind the self.remove_task function
to it being clicked (this will be covered below). We pack this, and then move on to a big block of binds.
The <MouseWheel>, <Button-4> and <Button-5> binds handle scrolling, and the <Configure> binds handle
keeping the Canvas as big as possible as the window changes size. The <Configure> event is fired when
widgets change size (and on some platorms, location) and will provide the new width and height. The
<Return> bind and colour_schemes remain from the previous example.

2.2.3 Handling Tasks

The add_task method is almost the same as the previous iteration, but the code for choosing the styling
has been moved into a separate method - set_task_colour - so that it can be re-used after deleting
tasks. Speaking of which, we have a remove_task method which will handle getting rid of the Label widget
associated with the task. To avoid accidental removal, we use an askyesno pop-up message to double-check
with the user that they wanted to delete that task (make sure you don’t miss the new import tkinter.
messagebox as msg statement at the top of the file). This will create a small notice with the title "Really
Delete?" and the message "Delete <task>?" (where <task> will be the text within the Label) with the
options "yes" and "no". Using the if statement around this means the indented code will only happen if the
user presses "yes". Upon deletion, we recolour all remaining tasks in our alternating pattern, as otherwise
the pattern would be broken by the removal.

2.2.4 Adjusting the canvas

Our on_frame_configure method is bound to our root’s <Configure> action, and will be called whenever
the window is resized. It sets the scrollable region for our canvas, and uses the bbox (bounding box) to
specify that we want the entire canvas to be scrollable. The task_width method is bound to the Canvas’s
<Configure>, and is responsible for ensuring the task Labels stay at the full width of the canvas, even after
stretching the window.

16 CHAPTER 2. A TO-DO LIST

2.2.5 Mouse scrolling

Our final method, mouse_scroll, is how we bind scrolling to the mouse wheel as well as the scrollbar. This
is bound to <MouseWheel> for Windows and OSX, and to <Button-4> and <Button-5> for Linux. We then
simply call the Canvas’ yview_scroll method based upon whether we receive a delta or a num within the
event. Here on Linux I get a num. The delta is usually 120 or -120, so is divided by 120 for more precise
scrolling, and multiplied by -1 to adjust the direction.

2.2.6 Next Iteration

Our final iteration will handle saving and retrieving values from a sqlite database. I have left this until
last because it’s not strictly tkinter related, and so you are free to skip this section if you have no interest
in learning about databases, or you already know enough to figure out how to do this on your own. If you
think the latter is true, please do go ahead and try as an exercise before reading this section.

2.3. PERMANENT STORAGE 17

2.3 Permanent Storage

There are only a few small changes to our existing methods in this iteration, so I will not re-print the whole
class. If you wish to follow along, start with your code from the previous version, make the changes listed
in this section, and add any other new methods to the end of our Todo class. As a reminder, the full code
will be available on Github at http://github.com/Dvlv/Tkinter-By-Example as Chapter2-3.py.

1 import tkinter as tk
2 import tkinter.messagebox as msg
3 import os
4 import sqlite3
5
6 class Todo(tk.Tk):
7 def __init__(self, tasks=None):
8 ...
9

10 self.title("To-Do App v3")
11
12 ...
13
14 self.colour_schemes = [{"bg": "lightgrey", "fg": "black"}, {"bg": "grey", "fg": "

white"}]
15
16 current_tasks = self.load_tasks()
17 for task in current_tasks:
18 task_text = task[0]
19 self.add_task(None, task_text, True)
20
21 ...
22
23 def add_task(self, event=None, task_text=None, from_db=False):
24 if not task_text:
25 task_text = self.task_create.get(1.0,tk.END).strip()
26
27 if len(task_text) > 0:
28 new_task = tk.Label(self.tasks_frame, text=task_text, pady=10)
29
30 self.set_task_colour(len(self.tasks), new_task)
31
32 new_task.bind("<Button-1>", self.remove_task)
33 new_task.pack(side=tk.TOP, fill=tk.X)
34
35 self.tasks.append(new_task)
36
37 if not from_db:
38 self.save_task(task_text)
39
40 self.task_create.delete(1.0, tk.END)
41
42 def remove_task(self, event):
43 task = event.widget
44 if msg.askyesno("Really Delete?", "Delete " + task.cget("text") + "?"):
45 self.tasks.remove(event.widget)
46
47 delete_task_query = "DELETE FROM tasks WHERE task=?"
48 delete_task_data = (task.cget("text"),)
49 self.runQuery(delete_task_query, delete_task_data)
50
51 event.widget.destroy()
52
53 self.recolour_tasks()
54
55 ...
56
57 def save_task(self, task):
58 insert_task_query = "INSERT INTO tasks VALUES (?)"

18 CHAPTER 2. A TO-DO LIST

59 insert_task_data = (task,)
60 self.runQuery(insert_task_query, insert_task_data)
61
62 def load_tasks(self):
63 load_tasks_query = "SELECT task FROM tasks"
64 my_tasks = self.runQuery(load_tasks_query, receive=True)
65
66 return my_tasks
67
68 @staticmethod
69 def runQuery(sql, data=None, receive=False):
70 conn = sqlite3.connect("tasks.db")
71 cursor = conn.cursor()
72 if data:
73 cursor.execute(sql, data)
74 else:
75 cursor.execute(sql)
76
77 if receive:
78 return cursor.fetchall()
79 else:
80 conn.commit()
81
82 conn.close()
83
84 @staticmethod
85 def firstTimeDB():
86 create_tables = "CREATE TABLE tasks (task TEXT)"
87 Todo.runQuery(create_tables)
88
89 default_task_query = "INSERT INTO tasks VALUES (?)"
90 default_task_data = ("--- Add Items Here ---",)
91 Todo.runQuery(default_task_query, default_task_data)
92
93
94 if __name__ == "__main__":
95 if not os.path.isfile("tasks.db"):
96 Todo.firstTimeDB()
97 todo = Todo()
98 todo.mainloop()

Listing 2.3: Database Integration

2.3. PERMANENT STORAGE 19

2.3.1 runQuery

Let’s start by explaining the database handling. Our runQuery method is a fairy generic database handling
method. It takes an sql string, some data to format into the sql string, and receive which indicates to the
method whether or not it needs to return any data (from a SELECT statement). We first connect to our
database file, in this case tasks.db, and receive a cursor. The cursor is used to execute queries against
the database and sometimes return data. We then close off our connection at the end to reduce resource
usage. This is a static method so that it can be called by our proceeding firstTimeDb method, which needs
to be called before our __init__, and so is also static.

2.3.2 firstTimeDb

This function is used to create the database file, tasks.db, if it does not already exist. We also put our
old default task, --- Add Tasks Here ---, in this method so that it appears when the user first loads the
app, but is permanently deletable like other tasks.

2.3.3 __init__

We start by just updating the window’s title bar to the 3rd version. We move the existing colour_schemes
variable to above the new code which will populate our existing tasks, so that we can use it during the
initial set-up. Without doing this, we would get an error when we reference it via add_task. Instead of
the hard-coded default task, we now fetch existing tasks from the database with load_tasks, then iterate
through them, passing each to our slightly altered add_task method.

2.3.4 add_task and remove_task

To prevent re-writing most of this code in our __init__ method, we have added two new parameters to
add_task: task_text and from_db. This allows us to pass in text independent of our Text widget, and
to prevent re-saving tasks to the database which originated from there. Before destroying our widget inside
remove_task, we grab its text and remove it from the database too.

2.3.5 save_task and load_tasks

These two methods deal with database access. save_task will add a new task into our database, and
load_tasks is called in our __init__ method to retrieve all saved tasks when loading the app. These two
methods ensure that the task list displays the same when the user closes then re-opens the app.

2.3.6 The final app

That’s it for our to-do list. We now have a to-do application which can save and retrieve tasks which remain
after closing the app. We have learned how to layout multiple widgets with Frames and the pack method,
how to make a scrollable area which maintains its size when the window is resized, how to bind methods
to user inputs and tkinter’s own events, and how to dynamically add and remove widgets based on user
actions. If you read the final section, you will also know how to integrate tkinter nicely with a sqlite
database. Next up we will create an app which utilises a tabbed interface, also known as a Notebook.

2.3.7 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Prevent duplicate tasks by using a database look-up before adding a new task.

• Give each task a "Delete" button instead of the on-click event on the Label itself (Buttons will be
covered next chapter).

• Instead of destroying tasks, mark them as "finished" using a column in the database and display them
as "greyed out".

20 CHAPTER 2. A TO-DO LIST

• Add a "category" for each task and colour the task based on the category instead of using the pattern
(maybe separate them with a border).

Chapter 3

A Multi-Language Translation Tool

In this chapter we’ll be creating a tool which will translate english text into multiple other languages using
the Google Translate API. Here we’ll learn about the following:

• Creating a tabbed interface

• Creating a Menu

• Creating a pop-up window

• Accessing the Clipboard

• Calling APIs with requests

3.1 A Single-Translation Interface

We’ll start with a simple app which translates to one language (italian). Your first app should look something
like this:

Figure 3.1: A two-tabbed translator (English)

21

22 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

Figure 3.2: A two-tabbed translator (Italian)

1 import tkinter as tk
2 from tkinter import messagebox as msg
3 from tkinter.ttk import Notebook
4
5 import requests
6
7 class TranslateBook(tk.Tk):
8 def __init__(self):
9 super().__init__()

10
11 self.title("Translation Book v1")
12 self.geometry("500x300")
13
14 self.notebook = Notebook(self)
15
16 english_tab = tk.Frame(self.notebook)
17 italian_tab = tk.Frame(self.notebook)
18
19 self.translate_button = tk.Button(english_tab, text="Translate", command=self.

translate)
20 self.translate_button.pack(side=tk.BOTTOM, fill=tk.X)
21
22 self.english_entry = tk.Text(english_tab, bg="white", fg="black")
23 self.english_entry.pack(side=tk.TOP, expand=1)
24
25 self.italian_copy_button = tk.Button(italian_tab, text="Copy to Clipboard",

command=self.copy_to_clipboard)
26 self.italian_copy_button.pack(side=tk.BOTTOM, fill=tk.X)
27
28 self.italian_translation = tk.StringVar(italian_tab)
29 self.italian_translation.set("")
30
31 self.italian_label = tk.Label(italian_tab, textvar=self.italian_translation, bg="

lightgrey", fg="black")
32 self.italian_label.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
33
34 self.notebook.add(english_tab, text="English")

3.1. A SINGLE-TRANSLATION INTERFACE 23

35 self.notebook.add(italian_tab, text="Italian")
36
37 self.notebook.pack(fill=tk.BOTH, expand=1)
38
39 def translate(self, target_language="it", text=None):
40 if not text:
41 text = self.english_entry.get(1.0, tk.END)
42
43 url = "https://translate.googleapis.com/translate_a/single?client=gtx&sl={}&tl

={}&dt=t&q={}".format("en", target_language, text)
44
45 try:
46 r = requests.get(url)
47 r.raise_for_status()
48 translation = r.json()[0][0][0]
49 self.italian_translation.set(translation)
50 msg.showinfo("Translation Successful", "Text successfully translated")
51 except Exception as e:
52 msg.showerror("Translation Failed", str(e))
53
54 def copy_to_clipboard(self, text=None):
55 if not text:
56 text = self.italian_translation.get()
57
58 self.clipboard_clear()
59 self.clipboard_append(text)
60 msg.showinfo("Copied Successfully", "Text copied to clipboard")
61
62
63 if __name__ == "__main__":
64 translatebook = TranslateBook()
65 translatebook.mainloop()

Listing 3.1: Our first translation app

3.1.1 requests

We now import and use the requests module. If you do not have this installed, you can get it with pip
(pip install requests).

3.1.2 __init__

Hopefully most the __init__ should look familiar to you by now. The first new bit is the creation of a
Notebook, which is what holds our tabs. The contents of each notebook tab is simply a Frame, each of
which holds two elements. Our english_frame holds a Text widget, allowing the user to enter some text,
and a Button which triggers the translation. The command argument supplied to a Button is the function
which we want to be called when it is clicked. An important thing to remember is to not put the parentheses
at the end of the function name, as this will actually call the function and bind the result (we want to bind
the function itself). This is the same potential mistake as when binding with the bind method from chapter
1.

Our italian_frame holds an expanded Label instead of a Text input, as we don’t want to be able to
alter the translated text, as well as a Button which will copy the translated text to our computer’s clipboard.

Another new thing here is the use of a StringVar. As you may be able to guess from the name, this is
like a sophisticated container for a string variable, which allows us the change the text of a Label without
needing to re-configure it. Its other great use is changing the text of multiple Labels (which need to say
the same thing) all at once, and we can also fire callbacks whenever the variable changes. In our case, the
StringVar is used to update the Label containing our italian translation, and to grab the text back out to
put onto our clipboard (as we’ll see later).

24 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

Instead of packing our two frames, we just add them to our notebook and pass the text (i.e. the name
of the tab) along with them, before finally packing our Notebook. Hopefully you should have a good idea
of the use-cases of this app just from the __init__ method.

3.1.3 translate

Much like with our to-do app, we grab the user’s text from our Text widget, but we won’t clear it this
time in case they’ve typed something really long and want to add something after translation. We next
create the URL to access google translate’s API with the format method, passing in our original language
code ("en"), target language code (defaults to "it", but we will specify this when adding another tab next
iteration) and our text to be translated (which we grabbed from the Text widget earlier). We visit this URL
using the requests module’s get method. The raise_for_status method will raise an Exception should
we recieve an error when calling the API, such as a 404 if there’s a typo. For this reason, we’ve put our code
in a try / except block so that we can gracefully alert the user via a messagebox if there’s a problem. If
no Exceptions are raised, we use the json method of requests to parse the json-formatted response from
the API into a nice block of python lists. The translation is in the first element of the first element of the
first list (not too graceful, I know!), hence the chaining of [0][0][0]. If you wish to look at the response,
add a print(translation) on the next line. We finish up by setting the translated text as the value of our
StringVar and showing the user a success message so that they know the other tabs have updated.

3.1.4 copy_to_clipboard

This is the function bound to the Button in our italian tab. We simply grab the StringVar’s value (which
our Label holds) and use tkinter to add the text into our computer’s clipboard. I originally intended to
use the pyperclip module to handle the clipboard, but then I found out that tkinter can handle it already
- super handy!

3.1.5 Next Iteration

Now that we have a proof-of-concept for our translator, we’ll go deeper in and set up a second language for
us to translate to, as well as a menu for us to pick languages from.

3.2. THREE TABS AND A MENU 25

3.2 Three Tabs and a Menu

Figure 3.3: A portuguese translation in our notebook

Our next iteration boasts a menu bar at the top, and the ability to translate to both italian and portuguese
at once. After running this iteration, click the "Languages" menu - you should see a "Portuguese" option.
Selecting this will add a third tab to our Notebook. If we follow the same translation process as before, we
will now see both the italian and portuguese tabs are updated with the translations. Neat. Whilst this is
not yet fully dynamic, we’ve laid out some groundwork for alternative translations. Let’s take a look at the
code changes which make this possible.

26 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

1 ...
2
3 class TranslateBook(tk.Tk):
4 def __init__(self):
5
6 ...
7
8 self.menu = tk.Menu(self, bg="lightgrey", fg="black")
9

10 self.languages_menu = tk.Menu(self.menu, tearoff=0, bg="lightgrey", fg="black")
11 self.languages_menu.add_command(label="Portuguese", command=self.

add_portuguese_tab)
12
13 self.menu.add_cascade(label="Languages", menu=self.languages_menu)
14
15 self.config(menu=self.menu)
16
17 ...
18
19 self.italian_translation = tk.StringVar(italian_tab)
20 self.italian_translation.set("")
21
22 self.translate_button = tk.Button(english_tab, text="Translate", command=lambda

langs=["it"], elems=[self.italian_translation]: self.translate(langs, None,
elems))

23
24 ...
25
26 def translate(self, target_languages=None, text=None, elements=None):
27 if not text:
28 text = self.english_entry.get(1.0, tk.END).strip()
29 if not elements:
30 elements = [self.italian_translation]
31 if not target_languages:
32 target_languages = ["it"]
33
34 url = "https://translate.googleapis.com/translate_a/single?client=gtx&sl={}&tl

={}&dt=t&q={}"
35
36 try:
37 for code, element in zip(target_languages, elements):
38 full_url = url.format("en", code, text)
39 r = requests.get(full_url)
40 r.raise_for_status()
41 translation = r.json()[0][0][0]
42 element.set(translation)
43 except Exception as e:
44 msg.showerror("Translation Failed", str(e))
45 else:
46 msg.showinfo("Translations Successful", "Text successfully translated")
47
48 def copy_to_clipboard(self, text=None):
49 ...
50
51 def add_portuguese_tab(self):
52 portuguese_tab = tk.Frame(self.notebook)
53 self.portuguese_translation = tk.StringVar(portuguese_tab)
54 self.portuguese_translation.set("")
55
56 self.portuguese_copy_button = tk.Button(portuguese_tab, text="Copy to Clipboard",

command=lambda: self.copy_to_clipboard(self.portuguese_translation.get()))
57 self.portuguese_copy_button.pack(side=tk.BOTTOM, fill=tk.X)
58
59 self.portuguese_label = tk.Label(portuguese_tab, textvar=self.

portuguese_translation, bg="lightgrey", fg="black")
60 self.portuguese_label.pack(side=tk.TOP, fill=tk.BOTH, expand=1)

3.2. THREE TABS AND A MENU 27

61
62 self.notebook.add(portuguese_tab, text="Portuguese")
63
64 self.languages_menu.entryconfig("Portuguese", state="disabled")
65
66 self.translate_button.config(command=lambda langs=["it","pt"], elems=[self.

italian_translation, self.portuguese_translation]: self.translate(langs, None
, elems))

67
68
69 if __name__ == "__main__":
70 translatebook = TranslateBook()
71 translatebook.mainloop()

Listing 3.2: Our Translator with a Menu

3.2.1 __init__

We now encounter a new tkinter widget - a Menu. A Menu is essentially a container for a list of buttons.
We start by declaring our "overall" menu, self.menu, which will hold our submenu, self.languages_menu.
We set tearoff to 0 so that the user can’t drag-and-drop the languages submenu out of the main menu. We
then add a command (essentially a button) called Portuguese. We bind the add_portuguese_tab method
to this button, again making sure not to call the function. We then use add_cascade to place our submenu
into our main bar. We finish up by calling self.configure(menu=self.menu) to set the root window’s
menu to our overall menu.

The only other change to this method is the moving of the italian_translation StringVar to above
our translate_button so that we can use it in the command. Speaking of which, we’ve now changed this
to a lambda which calls the new-and-improved translate method with a couple of lists as arguments. Let’s
look into translate now.

3.2.2 translate

Our translate now takes another argument - elements - which is a list of StringVars to update with a
translation. The target_languages argument is now expected to be a list of language codes, and the name
has been pluralised to reflect this.

Our url is no longer formatted upon creation, but is instead left with the placeholders in. We use zip
to combine our lists of language codes and StringVar elements into the correct pairs and then use them
to format our URL, parse out the translation, and update the StringVar as before - but this time in a
loop, allowing us to do this for any number of languages. You may not have come across an else by a
try / except block before. The purpose of the else is to execute code only if there was no exception
caught in the except. We’ve put our success messagebox in this else because we only want it to show
once, so it couldn’t be left inside the for loop, and we don’t want it to show if, say, the first translation
worked but the second did not. Out there in the else it should not be able to mislead the user into thinking
the translation was successful if it wasn’t, and will only appear once at the end of the process.

3.2.3 add_portuguese_tab

This is the function called when we choose our "Portuguese" option from our "Languages" menu. A lot of
the code here looks just like the italian code from our __init__. Since our copy_to_clipboard method still
has all of the defaults set to the italian translations, our portuguese_copy_button instead uses a lambda
to call it with the text argument as the value of its portuguese_translation StringVar.

At the end of the function we disable the "Portuguese" entry in our "Languages" menu. Without this
we could create multiple Portuguese tabs, which is pointless. We finish off by changing the command of

28 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

our translate button to a new lambda which contains both the italian and portuguese language codes and
StringVars.

3.2.4 Next Iteration

You may notice this code feels a bit hacky. The add_portuguese_tab function knows (well, assumes) that
we have an italian tab, and directly modifies our translate button too. In order to generalise this for re-use
we’re going to look at making each translation Frame its own class - allowing us to make any language
supported by google translate and add it as a tab to our notebook. The reason we didn’t do this all in one
go was so that we could meet the Menu widget and lay the groundwork for dynamically adding tabs before
a big overhaul of the app.

3.3. A TRULY DYNAMIC APP 29

3.3 A Truly Dynamic App

Our code is now split into 3 classes which I will cover separately. The executable code for this section is
all in Chapter3-3.py for those downloading it from Github. It is best practice to keep to one class per file,
but for the sake of book simplicity I’ve combined them. We’ll start this section off by looking at the new
LanguageTab class.

3.3.1 The LanguageTab

1 class LanguageTab(tk.Frame):
2 def __init__(self, master, lang_name, lang_code):
3 super().__init__(master)
4
5 self.lang_name = lang_name
6 self.lang_code = lang_code
7
8 self.translation_var = tk.StringVar(self)
9 self.translation_var.set("")

10
11 self.translated_label = tk.Label(self, textvar=self.translation_var, bg="

lightgrey", fg="black")
12
13 self.copy_button = tk.Button(self, text="Copy to Clipboard", command=self.

copy_to_clipboard)
14
15 self.copy_button.pack(side=tk.BOTTOM, fill=tk.X)
16 self.translated_label.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
17
18 def copy_to_clipboard(self):
19 root = self.winfo_toplevel()
20 root.clipboard_clear()
21 root.clipboard_append(self.translation_var.get())
22 msg.showinfo("Copied Successfully", "Text copied to clipboard")

Listing 3.3: An Independent Language Tab

Our LanguageTab class is built on top of a Frame, since that’s what we add into our Notebook. It holds
a reference to the full name of the language (for the tab name) and its short code for the google translate
API. It is responsible for its own StringVar, Label and Button, as well as the command bound to the
Button

The copy_to_clipboard method needs to access the root window, i.e. our TranslateBook instance,
because that’s what has control over the clipboard. We grab this with the winfo_toplevel method, then
use the same code as before to put our StringVar’s contents onto the clipboard.

Now we’ll jump back to the main TranslateBook class which handles our root window.

30 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

3.3.2 The TranslateBook

1 class TranslateBook(tk.Tk):
2 def __init__(self):
3 super().__init__()
4
5 self.title("Translation Book v3")
6 self.geometry("500x300")
7
8 self.menu = tk.Menu(self, bg="lightgrey", fg="black")
9

10 self.languages_menu = tk.Menu(self.menu, tearoff=0, bg="lightgrey", fg="black")
11 self.languages_menu.add_command(label="Add New", command=self.

show_new_language_popup)
12 self.languages_menu.add_command(label="Portuguese", command=lambda: self.

add_new_tab(LanguageTab(self, "Portuguese", "pt")))
13
14 self.menu.add_cascade(label="Languages", menu=self.languages_menu)
15
16 self.config(menu=self.menu)
17
18 self.notebook = Notebook(self)
19
20 self.language_tabs = []
21
22 english_tab = tk.Frame(self.notebook)
23
24 self.translate_button = tk.Button(english_tab, text="Translate", command=self.

translate)
25 self.translate_button.pack(side=tk.BOTTOM, fill=tk.X)
26
27 self.english_entry = tk.Text(english_tab, bg="white", fg="black")
28 self.english_entry.pack(side=tk.TOP, expand=1)
29
30 self.notebook.add(english_tab, text="English")
31
32 self.notebook.pack(fill=tk.BOTH, expand=1)
33
34 def translate(self, text=None):
35 if len(self.language_tabs) < 1:
36 msg.showerror("No Languages", "No languages added. Please add some from the

menu")
37 return
38
39 if not text:
40 text = self.english_entry.get(1.0, tk.END).strip()
41
42 url = "https://translate.googleapis.com/translate_a/single?client=gtx&sl={}&tl

={}&dt=t&q={}"
43
44 try:
45 for language in self.language_tabs:
46 full_url = url.format("en", language.lang_code, text)
47 r = requests.get(full_url)
48 r.raise_for_status()
49 translation = r.json()[0][0][0]
50 language.translation_var.set(translation)
51 except Exception as e:
52 msg.showerror("Translation Failed", str(e))
53 else:
54 msg.showinfo("Translations Successful", "Text successfully translated")
55
56 def add_new_tab(self, tab):
57 self.language_tabs.append(tab)
58 self.notebook.add(tab, text=tab.lang_name)
59

3.3. A TRULY DYNAMIC APP 31

60 try:
61 self.languages_menu.entryconfig(tab.lang_name, state="disabled")
62 except:
63 # language isn’t in menu.
64 pass
65
66 def show_new_language_popup(self):
67 NewLanguageForm(self)

Listing 3.4: Our Main Class

__init__

We’ve added a new item to our languages_menu - add new - which will be covered with our final class
NewLanguageForm. We’ve also re-written our portuguese entry to use a new method add_new_tab. We no
longer make everything for our italian tab since this is handled with the LanguageTab class, we instead keep
a list of tabs inside self.language_tabs. Since our english tab is different, we still have all of the set up
of that here.

translate

This should still look very familiar. Instead of passing in a list of language codes and elements, we just grab
our list of language_tabs and pull the codes and elements from each instance. If we have no language tabs
a messagebox will alert the user to add one first and exit the method with return.

add_new_tab

We pass this method a LanguageTab object and it gets appended to our language_tabs list and added to
our Notebook. We also try to disable the menu entry if it exists. We don’t mind if this fails, as it likely
means the language was created outside of the menu and there’s no entry to disable, so we can just pass
if an Exception is thrown.

show_new_language_popup

All we need to do here is create the NewLanguageForm instance which will handle everything else. Let’s look
at this now.

32 CHAPTER 3. A MULTI-LANGUAGE TRANSLATION TOOL

3.3.3 NewLanguageForm

Figure 3.4: Our Add New Language Form

1 class NewLanguageForm(tk.Toplevel):
2 def __init__(self, master):
3 super().__init__()
4
5 self.master = master
6
7 self.title("Add new Language")
8 self.geometry("300x150")
9

10 self.name_label = tk.Label(self, text="Language Name")
11 self.name_entry = tk.Entry(self, bg="white", fg="black")
12 self.code_label = tk.Label(self, text="Language Code")
13 self.code_entry = tk.Entry(self, bg="white", fg="black")
14 self.submit_button = tk.Button(self, text="Submit", command=self.submit)
15
16 self.name_label.pack(fill=tk.BOTH, expand=1)
17 self.name_entry.pack(fill=tk.BOTH, expand=1)
18 self.code_label.pack(fill=tk.BOTH, expand=1)
19 self.code_entry.pack(fill=tk.BOTH, expand=1)
20 self.submit_button.pack(fill=tk.X)
21
22 def submit(self):
23 lang_name = self.name_entry.get()
24 lang_code = self.code_entry.get()
25
26 if lang_name and lang_code:
27 new_tab = LanguageTab(self.master, lang_name, lang_code)
28 self.master.languages_menu.add_command(label=lang_name, command=lambda: self.

master.add_new_tab(new_tab))
29 msg.showinfo("Language Option Added", "Language option " + lang_name + "

added to menu")
30 self.destroy()
31 else:
32 msg.showerror("Missing Information", "Please add both a name and code")

Listing 3.5: Our Translator with a Menu

As you should be able to interpret from the code, we have a small window with 2 Labels, 2 Entries
and a Button. An Entry is just a Text widget which is only one line. If you’re familiar with HTML, think
of an Entry as an input[type="text"] and a Text as a textarea. Our __init__ just sets our window
title and size, creates the widgets, and packs them all. The master argument to here is our TranslateBook
instance, as the submit method needs to access its languages_menu

Our submit method is called by our Button. It grabs the text from our two Entries and creates a

3.3. A TRULY DYNAMIC APP 33

LanguageTab instance from them. It then accesses our TranslateBook’s languages_menu and adds the
newly created LanguageTab instance as an option. Finally it shows a success messagebox and destroys itself
(so the user doesn’t have to close it manually). If you don’t like this, you could always clear the Entries
and leave the window open for the user to add another language straight after. If the user hasn’t filled out
one of the Entries a messagebox will let them know that they are both needed.

3.3.4 Running this version

In our old if __name__ == "__main__" statement we just created a TranslateBook instance and called
its mainloop. If we want tabs to appear by default, like our italian tab originally, we need to create a
LanguageTab instance and then use add_new_tab to add it to our TranslateBook before calling mainloop.
In Chapter3-3.py you will see I have done this with the italian tab as before.

If you don’t know of a language and code to test the NewLanguageForm out with, try "Spanish" and
"es". Keep in mind that we only add the new language as a menu option, so it will not appear in your
Notebook straight away, you must pick it from the menu first.

3.3.5 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Import ttk and adjust the app to use ttk’s widgets (you will see a small attempt at this with
Chapter3-3-ttk.py on Github, as I eventually deemed it unworthy of its own section).

• Bind the relevant Button functionality to the Return key.

• Before adding a new language validate that the short code added exists for the google translate api.

• Remember the app’s previous state with sqlite (i.e. which tabs were added and which languages
were available in the menu).

• Add a "Remove a Language" Menu which lists the enabled languages and lets the user remove one.

Chapter 4

A Point-and-Click Game

In this chapter we’ll be creating one of those point-and-click puzzle games. Here we’ll learn about the
following:

• Handling images

• Drawing on and updating a Canvas

4.1 The Initial Concept

Figure 4.1: Our Point-and-Click Game

The concept I chose for our game is like a super simple version of the "escape the room" puzzle games.
You see a door and need to escape. If you are following along, give the game a try before you begin. It’s
Chapter4-1.py from Github. When writing out this code, feel free to use my (amazing) artwork if you don’t
fancy drawing anything yourself.

34

4.1. THE INITIAL CONCEPT 35

1 import tkinter as tk
2 from tkinter import font
3
4 class GameScreen():
5 def __init__(self, master, image, roi, inventory_item=None, help_text=None):
6 self.master = master
7 self.roi = roi
8 self.image = tk.PhotoImage(file=image)
9 self.inventory_item = inventory_item

10 self.help_text = help_text
11
12 def on_click(self, event):
13 if (self.roi[0] <= event.x <= self.roi[2]
14 and self.roi[1] <= event.y <= self.roi[3]):
15
16 if self.inventory_item:
17 self.master.add_inventory_item(self.inventory_item)
18 self.master.show_next_screen()
19
20
21 class Game(tk.Tk):
22 def __init__(self):
23 super().__init__()
24
25 self.inventory_slots = []
26 self.inventory_slots_in_use = []
27 self.current_screen_number = 0
28 self.success_font = font.Font(family="ubuntu", size=50, weight=font.BOLD)
29
30 self.title("Point and Click")
31 self.geometry("800x640")
32 self.resizable(False, False)
33
34 self.key_image = tk.PhotoImage(file="assets/key.png")
35 self.question_mark_image = tk.PhotoImage(file="assets/questionmark.png")
36
37 self.screen = tk.Canvas(self, bg="white", width=500, height=800)
38 self.right_frame = tk.Frame(self, width=300, height=800)
39 self.right_frame.pack_propagate(0)
40
41 self.help_var = tk.StringVar(self.right_frame)
42 self.help_var.set("Try Clicking Something")
43
44 self.help_box = tk.Label(self.right_frame, textvar=self.help_var, background="

black", foreground="white", padx=10, pady=20)
45 self.help_box.pack(side=tk.TOP, fill=tk.X, padx=10, pady=10)
46
47 inventory_title = tk.Label(self.right_frame, text="Inventory:", background="grey"

, foreground="white")
48
49 inventory_space = tk.Frame(self.right_frame, background="lightgrey", width=300,

height=320)
50 inventory_space.pack_propagate(0)
51
52 inventory_space.pack(side=tk.BOTTOM)
53 inventory_title.pack(side=tk.BOTTOM, fill=tk.X)
54
55 inventory_slot_1 = tk.Button(inventory_space, image=self.question_mark_image,

width=50, height=50)
56 inventory_slot_2 = tk.Button(inventory_space, image=self.question_mark_image,

width=50, height=50)
57 inventory_slot_3 = tk.Button(inventory_space, image=self.question_mark_image,

width=50, height=50)
58
59 inventory_slot_1.pack(pady=(40,20), padx=20)
60 inventory_slot_2.pack(pady=20, padx=20)

36 CHAPTER 4. A POINT-AND-CLICK GAME

61 inventory_slot_3.pack(pady=(20,0), padx=20)
62
63 self.inventory_slots.append(inventory_slot_1)
64 self.inventory_slots.append(inventory_slot_2)
65 self.inventory_slots.append(inventory_slot_3)
66
67 self.right_frame.pack(side=tk.RIGHT)
68 self.screen.pack(side=tk.LEFT)
69
70 self.screen.bind("<Button-1>", self.handle_click)
71
72 def handle_click(self, event):
73 self.active_screen.on_click(event)
74
75 def set_game_screens(self, game_screens):
76 self.game_screens = game_screens
77
78 def display_screen(self, game_screen_number):
79 self.active_screen = self.game_screens[game_screen_number]
80 self.screen.delete("all")
81 self.screen.create_image((250,400), image=self.active_screen.image)
82 self.help_var.set(self.active_screen.help_text)
83
84 def show_next_screen(self):
85 self.current_screen_number += 1;
86 if self.current_screen_number < len(self.game_screens):
87 self.display_screen(self.current_screen_number)
88 else:
89 self.screen.delete("all")
90 self.screen.configure(bg="black")
91 self.screen.create_text((250,300), text="You Win!", font=self.success_font,

fill="white")
92
93 def add_inventory_item(self, item_name):
94 next_available_inventory_slot = len(self.inventory_slots_in_use)
95 if next_available_inventory_slot < len(self.inventory_slots):
96 next_slot = self.inventory_slots[next_available_inventory_slot]
97
98 if item_name == "key":
99 next_slot.configure(image=self.key_image)

100
101 self.inventory_slots_in_use.append(item_name)
102
103 def play(self):
104 if not self.game_screens:
105 print("No screens added!")
106 else:
107 self.display_screen(0)
108
109
110 if __name__ == "__main__":
111 game = Game()
112
113 scene1 = GameScreen(game, "assets/scene1.png", (378,135,427,217), "key", "You Need To

Leave but the Door is Locked!")
114 scene2 = GameScreen(game, "assets/scene2.png", (117,54,329,412), None, "You Got the

Key!")
115 scene3 = GameScreen(game, "assets/scene3.png", (117,54,329,412), None, "The Door is

Open!")
116
117 all_screens = [scene1, scene2, scene3]
118
119 game.set_game_screens(all_screens)
120 game.play()

4.1. THE INITIAL CONCEPT 37

121 game.mainloop()

Listing 4.1: Our Game

4.1.1 GameScreen

The GameScreen Class is essentially a nice container around the attributes associated with each screen. It
holds a reference to our main Game object, the image to display for this screen (I’ll cover PhotoImages next),
the region-of-interest (i.e. where to click in order to advance), an item to be picked up, and the help text to
display. The on_click function is sent the click event from the Game’s Canvas. It compares the coordinates
of the clicked point of the Canvas to its region-of-interest, then advances the game if the correct area was
clicked. If the screen holds an inventory item it is added to the Game’s inventory before advancing. I debated
with myself whether or not to handle this logic within the Game itself, but have decided it looks a bit neater
here.

4.1.2 Game

Our Game object defines the main window and layout, as well as handles tracking and progressing in the
game. Let’s break it down a bit:

__init__

We begin with creating some empty lists for our inventory and used-inventory (more on this later). We
initialise the current screen to 0 and create a Font which will be used to display a success message when the
player finishes the game. After setting the title and size of the window, we also set resizable to (False,
False) to prevent the window from being resized in either direction. This removes any need to re-size the
GameScreen images if the player decides to change the window dimensions.

Next we create two PhotoImage objects. These are just tkinter’s way of holding an image file in a
usable format. These PhotoImages can be placed onto widgets such as Buttons, Labels and Canvases.
These two PhotoImages will be going on Buttons which will represent our player’s inventory.

We define a Canvas and Frame with fixed widths and heights which allows us to accurately split our
screen in two. We use pack_propagate(0) to keep the Frame at its defined size. Frames will shrink to the
size necessary to hold their contents by default, but we need this one to stay full-sized irrespective of its
children.

We go on to define a StringVar to hold our help text, a Label to display it, another Label to title our
inventory, and a second Frame inside the right_frame to hold our inventory items. Our three inventory
items are just Buttons which start off showing a question mark image. These are then packed with some
padding to space them out a bit. A tuple is used to define (above,below) padding independently (which
would be (left,right) inside padx). We stick our inventory items into our inventory_slots list and finish
packing before binding a method to left-clicking our canvas.

Handling Game Screens

set_game_screens simply sets a list of GameScreen objects as an attribute of our Game. The reason this
isn’t in __init__ is because we need a reference to the Game to create the GameScreens.

display_screen takes in an index of our game_screens list and keeps a reference to the GameScreen
at that index. It then clears the Canvas and draws our current screen’s image onto it. Finally it updates
the help Label’s StringVar to display its hint to the player.

show_next_screen updates the number which points to our current screen then checks that it is within
the bounds of our game_screens. If it is then we display the screen at that index. If it’s not then we are out

38 CHAPTER 4. A POINT-AND-CLICK GAME

of screens, indicating that the player has won. In this case we set the Canvas to black and show a success
message.

Handling Inventory

With this iteration of our inventory system, we’re using a list to track which slots are available. The
length of the inventory_slots_in_use list is used to select the next index of our inventory to add a
new item to. The same check as show_next_screen is used to ensure we are using a valid index of our
inventory_slots list, and if so the Button at that slot is chosen. We configure the Button with the
appropriate PhotoImage for the item being added (in this case we just have the key) and append the
item_name to our inventory_slots_in_use list to track that this slot is now in use.

4.1.3 Playing the Game

We begin by making a Game object as the main window. We then create three GameScreens with their
associated image, region-of-interest, item, and hint. The GameScreen’s region-of-interest is specified as a
4-tuple with the first two numbers as the top-left x and y, and the second two as the bottom right x and y,
forming a rectangle. We merge these together into a list and pass it to our Game with set_game_screens.
We finish up by calling play() to set the initial screen and mainloop() to make the window visible.

4.1.4 Next Iteration

Next up we’ll be refining the inventory system logic as well as showing the history of hints in the big space
below the current one.

4.2. OUR REFINED POINT-AND-CLICK GAME 39

4.2 Our Refined Point-and-Click game

With this iteration our item system is more sophisticated. We can now click and use things from our
inventory and specify scenes which require the use of an item to continue. Let’s look at how this is done.

1 import tkinter as tk
2 from tkinter import font
3 from functools import partial
4
5 class GameScreen():
6 def __init__(self, master, image, roi, inventory_item=None, help_text=None,

required_item=None):
7 ...
8 self.required_item = required_item
9

10 def on_click(self, event, item_in_use):
11 if self.master.has_won:
12 return
13
14 if item_in_use and not self.required_item:
15 self.master.show_cannot_use_message()
16 elif (self.roi[0] <= event.x <= self.roi[2]
17 and self.roi[1] <= event.y <= self.roi[3]):
18
19 if self.inventory_item:
20 self.master.add_inventory_item(self.inventory_item)
21
22 if self.required_item:
23 if item_in_use == self.required_item:
24 self.master.show_next_screen()
25 else:
26 self.master.show_next_screen()
27 else:
28 if item_in_use:
29 self.master.show_cannot_use_message()
30
31
32 class Game(tk.Tk):
33 def __init__(self):
34 ...
35 self.cannot_use_font = font.Font(family="ubuntu", size=28, weight=font.BOLD)
36 self.item_in_use = ""
37 self.has_won = False
38
39 ...
40
41 self.help_history_var_1 = tk.StringVar(self.right_frame)
42 self.help_history_var_2 = tk.StringVar(self.right_frame)
43 self.help_history_var_3 = tk.StringVar(self.right_frame)
44
45 help_history_box_1 = tk.Label(self.right_frame, textvar=self.help_history_var_1,

bg="black", fg="white", padx=10, pady=10)
46 help_history_box_2 = tk.Label(self.right_frame, textvar=self.help_history_var_2,

bg="black", fg="white", padx=10, pady=10)
47 help_history_box_3 = tk.Label(self.right_frame, textvar=self.help_history_var_3,

bg="black", fg="white", padx=10, pady=10)
48
49 help_history_box_1.pack(side=tk.TOP, fill=tk.X, padx=10)
50 help_history_box_2.pack(side=tk.TOP, fill=tk.X, padx=10)
51 help_history_box_3.pack(side=tk.TOP, fill=tk.X, padx=10)
52
53 ...
54
55 inventory_row_1 = tk.Frame(self.inventory_space, pady=10)
56 inventory_row_2 = tk.Frame(self.inventory_space, pady=10)
57 inventory_row_3 = tk.Frame(self.inventory_space, pady=10)

40 CHAPTER 4. A POINT-AND-CLICK GAME

58
59 inventory_slot_1 = tk.Button(self.inventory_row_1,
60 image=self.question_mark_image,
61 width=50, height=50,
62 bg="black",
63 command=lambda: self.use_item(0))
64
65 inventory_slot_2 = tk.Button(self.inventory_row_2,
66 image=self.question_mark_image,
67 width=50, height=50,
68 bg="black",
69 command=lambda: self.use_item(1))
70
71 inventory_slot_3 = tk.Button(self.inventory_row_3,
72 image=self.question_mark_image,
73 width=50, height=50,
74 bg="black",
75 command=lambda: self.use_item(2))
76
77 item_name_1 = tk.StringVar(self.inventory_row_1)
78 item_name_2 = tk.StringVar(self.inventory_row_2)
79 item_name_3 = tk.StringVar(self.inventory_row_3)
80
81 self.item_label_vars = [self.item_name_1, self.item_name_2, self.item_name_3]
82
83 item_label_1 = tk.Label(self.inventory_row_1, textvar=self.item_name_1, anchor="w

")
84 item_label_2 = tk.Label(self.inventory_row_2, textvar=self.item_name_2, anchor="w

")
85 item_label_3 = tk.Label(self.inventory_row_3, textvar=self.item_name_3, anchor="w

")
86
87 inventory_row_1.pack(fill=tk.X, expand=1)
88 inventory_row_2.pack(fill=tk.X, expand=1)
89 inventory_row_3.pack(fill=tk.X, expand=1)
90
91 inventory_slot_1.pack(side=tk.LEFT, padx=(100,20))
92 item_label_1.pack(side=tk.LEFT, fill=tk.X, expand=1)
93 inventory_slot_2.pack(side=tk.LEFT, padx=(100,20))
94 item_label_2.pack(side=tk.LEFT, fill=tk.X, expand=1)
95 inventory_slot_3.pack(side=tk.LEFT, padx=(100,20))
96 item_label_3.pack(side=tk.LEFT, fill=tk.X, expand=1)
97
98 ...
99

100 def handle_click(self, event):
101 ...
102
103 def set_game_screens(self, game_screens):
104 ...
105
106 def display_screen(self, game_screen_number):
107 ...
108 self.show_help_text(self.active_screen.help_text)
109
110 def show_next_screen(self):
111 self.current_screen_number += 1;
112 if self.current_screen_number < len(self.game_screens):
113 self.display_screen(self.current_screen_number)
114 self.clear_used_item()
115 else:
116 self.screen.delete("all")
117 self.screen.configure(bg="black")
118 self.screen.create_text((250,300), text="You Win!", font=self.success_font,

fill="white")
119 self.has_won = True

4.2. OUR REFINED POINT-AND-CLICK GAME 41

120
121 def show_help_text(self, text):
122 self.help_history_var_3.set(self.help_history_var_2.get())
123 self.help_history_var_2.set(self.help_history_var_1.get())
124 self.help_history_var_1.set(self.help_var.get())
125 self.help_var.set(text)
126
127 def add_inventory_item(self, item_name):
128 next_available_inventory_slot = len(self.inventory_slots_in_use)
129 if next_available_inventory_slot < len(self.inventory_slots):
130 next_slot = self.inventory_slots[next_available_inventory_slot]
131 next_label_var = self.item_label_vars[next_available_inventory_slot]
132
133 if item_name == "key":
134 next_slot.configure(image=self.key_image)
135
136 next_label_var.set(item_name.title())
137 self.inventory_slots_in_use.append(item_name)
138
139 def use_item(self, item_number):
140 if item_number < len(self.inventory_slots_in_use):
141 item_name = self.inventory_slots_in_use[item_number]
142 if item_name:
143 self.item_in_use = item_name
144
145 for button in self.inventory_slots:
146 button.configure(bg="black")
147
148 self.inventory_slots[item_number].configure(bg="white")
149 self.inventory_slots[item_number].configure(command=self.clear_used_item)
150
151 def clear_used_item(self):
152 self.item_in_use = ""
153 for index, button in enumerate(self.inventory_slots):
154 button.configure(bg="black")
155
156 use_cmd = partial(self.use_item, item_number=index)
157 button.configure(command=use_cmd)
158
159 def show_cannot_use_message(self):
160 text_id = self.screen.create_text((250,25), text="You cannot use that there!",

font=self.cannot_use_font, fill="white")
161 self.after(2000, lambda: self.screen.delete(text_id))
162
163 def play(self):
164 ...
165
166
167 if __name__ == "__main__":
168 ...
169 scene2 = GameScreen(game, "assets/scene2.png", (117,54,329,412), None, "You Got the

Key!", "key")
170 ...

Listing 4.2: Our Game With Working Inventory

4.2.1 GameScreen

We’ve now got a new argument for each screen, required_item, which establishes whether or not we
need to be using an item to advance to the next screen. We’ve added some new logic to on_click to
accommodate this.

The method now takes an item_in_use argument which represents the active inventory item (if any).
First off, we return if the game is won, to prevent clicks on the "You Win" screen. We display a message

42 CHAPTER 4. A POINT-AND-CLICK GAME

to the user if they are trying to use an item on a screen which does not require one, or they are outside of
the scene’s region-of-interest. When inside the region-of-interest, we check that the item_in_use matches
the scene’s required_item and only advance the screen if so. The rest of the logic is the same as before.

4.2.2 Game

__init__

We’ve added a few new attributes to the beginning of our __init__. We have a font for the message letting
a user know they cannot use their selected item, a string which will hold the item currently in use, and a
boolean for whether or not the game has been won.

Afterwards we define three StringVars for our help history and 3 Labels to hold them. We next need
3 frames to hold our inventory Buttons and associated Labels. Our Buttons have had commands added so
that they will now use an item when clicked (method will be covered later). We then define three more
StringVars and Labels to display the name of each item next to its button. The StingVars are put into a
list for access later. We finish off by packing everything.

Handling Game Screens

display_screen is mostly the same, but now calls a new method show_help_text instead of directly
manipulating the help_var.

show_next_screen clears the used item when updating the screen, and sets has_won to True if the
game has displayed all of its screens.

The aforementioned show_help_text propagates the values of each of our help_history StringVars
down to the next one before setting the main help_var’s text to that of the current GameScreen.

Handling the Inventory

This is where the majority of changes this iteration are. Our add_inventory_item method now grabs the
StringVar in the same index as the next open inventory slot and adds the name of the item to it. The
.title() here just capitalises the text for aesthetic purposes.

Our new use_item method (which is bound to each Button in our inventory space) takes in the index
of each inventory item as item_number, checks it’s valid for the size of the inventory_slots_in_use list
and sets it as our item_in_use, which is used by our GameScreen’s on_click. It then loops through our
inventory Buttons resetting them to a black background before configuring the clicked Button to have a white
background, indicating that the item is in use. It also swaps out the Button’s command to clear_used_item
so that the user can un-set the item if they want to deactivate it.

Speaking of which, our clear_used_item method sets our item_in_use to an empty string, resets each
Button’s background to black and re-binds it’s command to its previous use_item. We need to use a partial
from the functools module to ensure we bind a function with the correct item_number argument for each
Button.

If the player is trying to use an item somewhere in the scene where it is not usable, we need to tell
them so. We do this with the show_cannot_use_message method. This method creates some text on our
Canvas with our previously-defined font style. Since the create_text method returns a unique ID for the
created text, we store that in a variable called text_id. We then use tkinter’s after method to schedule
a function to be called after 2 seconds. This function is a lambda which deletes the previously-created text
by passing its ID to delete. This ensures the text does not stay on the player’s screen for the rest of that
scene.

4.2. OUR REFINED POINT-AND-CLICK GAME 43

Playing the Final Game

Just one change here - we pass the "key" as the required_item to our second scene. This means the
player needs to activate the key in their inventory to open the door.

This is where we will leave development of our point-and-click game. The fundamentals of just clicking a
region and collecting / using items leads to the potential for a lot of gameplay. A lot of further development
would require creating scenes and artwork, which has always been my weakpoint with game development.
Despite this I feel like this point-and-click framework has a lot of potential, and is especially interesting
given that it is written without an actual game engine.

4.2.3 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Add a screen which gives the player another item, and a screen which requires this item (how about
it’s raining outside so the player must pick up an umbrella?).

• Add cutscenes with dialogue boxes which can be advanced by pressing the space bar.

• Add a clues section which has a button for one clue per screen.

Chapter 5

Ini File Editor

In this chapter we’ll be creating an app which allows us to edit .ini config files. There’s a folder in the
code repository called ini_files with a test file for you to play with while writing out this code. With this
project we will learn about the following:

• The Listbox widget.

• The Spinbox widget.

• Creating a file open and file save dialogue.

• Using keyboard shortcuts with Menu items.

5.1 Basic View and Edit Functionality

Figure 5.1: Our Ini File Editor

44

5.1. BASIC VIEW AND EDIT FUNCTIONALITY 45

1 import tkinter as tk
2 from tkinter import filedialog
3 import tkinter.messagebox as msg
4 import configparser as cp
5 import ntpath
6
7 class IniEditor(tk.Tk):
8
9 def __init__(self):

10 super().__init__()
11
12 self.title("Config File Editor")
13 self.geometry("600x600")
14
15 self.active_ini = ""
16 self.active_ini_filename = ""
17 self.ini_elements = {}
18
19 self.menubar = tk.Menu(self, bg="lightgrey", fg="black")
20
21 self.file_menu = tk.Menu(self.menubar, tearoff=0, bg="lightgrey", fg="black")
22 self.file_menu.add_command(label="Open", command=self.file_open, accelerator="

Ctrl+O")
23 self.file_menu.add_command(label="Save", command=self.file_save, accelerator="

Ctrl+S")
24
25 self.menubar.add_cascade(label="File", menu=self.file_menu)
26
27 self.config(menu=self.menubar)
28
29 self.left_frame = tk.Frame(self, width=200, height=600, bg="grey")
30 self.left_frame.pack_propagate(0)
31
32 self.right_frame = tk.Frame(self, width=400, height=600, bg="lightgrey")
33 self.right_frame.pack_propagate(0)
34
35 self.file_name_var = tk.StringVar(self)
36 self.file_name_label = tk.Label(self, textvar=self.file_name_var, fg="black", bg=

"white", font=(None, 12))
37 self.file_name_label.pack(side=tk.TOP, expand=1, fill=tk.X)
38
39 self.section_select = tk.Listbox(self.left_frame, selectmode=tk.SINGLE)
40 self.section_select.configure(exportselection=False)
41 self.section_select.pack(expand=1)
42 self.section_select.bind("<<ListboxSelect>>", self.display_section_contents)
43
44 self.left_frame.pack(side=tk.LEFT, fill=tk.BOTH)
45 self.right_frame.pack(side=tk.LEFT, expand=1, fill=tk.BOTH)
46
47 self.bind("<Control-o>", self.file_open)
48 self.bind("<Control-s>", self.file_save)
49
50 def file_open(self, event=None):
51 ini_file = filedialog.askopenfilename()
52
53 while ini_file and not ini_file.endswith(".ini"):
54 msg.showerror("Wrong Filetype", "Please select an ini file")
55 ini_file = filedialog.askopenfilename()
56
57 if ini_file:
58 self.parse_ini_file(ini_file)
59
60 def file_save(self, event=None):
61 if not self.active_ini:
62 msg.showerror("No File Open", "Please open an ini file first")
63 return

46 CHAPTER 5. INI FILE EDITOR

64
65 chosen_section = self.section_select.get(self.section_select.curselection())
66
67 for key in self.active_ini[chosen_section]:
68 self.active_ini[chosen_section][key] = self.ini_elements[key].get()
69
70 with open(self.active_ini_filename, "w") as ini_file:
71 self.active_ini.write(ini_file)
72
73 msg.showinfo("Saved", "File Saved Successfully")
74
75 def parse_ini_file(self, ini_file):
76 self.active_ini = cp.ConfigParser()
77 self.active_ini.read(ini_file)
78 self.active_ini_filename = ini_file
79
80 self.section_select.delete(0, tk.END)
81
82 for index, section in enumerate(self.active_ini.sections()):
83 self.section_select.insert(index, section)
84 if "DEFAULT" in self.active_ini:
85 self.section_select.insert(len(self.active_ini.sections()) + 1, "DEFAULT")
86
87 file_name = ": ".join([ntpath.basename(ini_file), ini_file])
88 self.file_name_var.set(file_name)
89
90 self.clear_right_frame()
91
92 def clear_right_frame(self):
93 for child in self.right_frame.winfo_children():
94 child.destroy()
95
96 def display_section_contents(self, event=None):
97 if not self.active_ini:
98 msg.showerror("No File Open", "Please open an ini file first")
99 return

100
101 self.clear_right_frame()
102
103 self.ini_elements = {}
104
105 chosen_section = self.section_select.get(self.section_select.curselection())
106
107 for key in sorted(self.active_ini[chosen_section]):
108 new_label = tk.Label(self.right_frame, text=key, font=(None, 12), bg="black",

fg="white")
109 new_label.pack(fill=tk.X, side=tk.TOP, pady=(10,0))
110
111 value = self.active_ini[chosen_section][key]
112
113 if value.isnumeric():
114 spinbox_default = tk.IntVar(self.right_frame)
115 spinbox_default.set(int(value))
116 ini_element = tk.Spinbox(self.right_frame, from_=0, to=99999,

textvariable=spinbox_default, bg="white", fg="black", justify="center
")

117 else:
118 ini_element = tk.Entry(self.right_frame, bg="white", fg="black", justify=

"center")
119 ini_element.insert(0, value)
120
121 ini_element.pack(fill=tk.X, side=tk.TOP, pady=(0,10))
122 self.ini_elements[key] = ini_element
123
124 save_button = tk.Button(self.right_frame, text="Save Changes", command=self.

file_save)

5.1. BASIC VIEW AND EDIT FUNCTIONALITY 47

125 save_button.pack(side=tk.BOTTOM, pady=(0,20))
126
127
128 if __name__ == "__main__":
129 ini_editor = IniEditor()
130 ini_editor.mainloop()

Listing 5.1: Our Ini Editor

5.1.1 __init__

We begin with the hopefully-now-familiar activities such as setting the window title and size, initialising
some blank variables, creating our necessary widgets and packing everything. The active_ini will hold our
parsed .ini file, the active_ini_filename will hold the name of the given .ini file, and ini_elements
will be used to associate a setting with a tkinter widget.

We go on to create a Menu containing a "file" option which holds "open" and "save" functionality. The
accelerator argument passed to the file options is used to display the keyboard shortcut which will activate
them.

Our window will be split into two Frames with the left being half as big as the right. We again use
pack_propagate(0) to stop them shrinking. We will also display a Label at the top of the window telling
the user which file they have open. We specify the font argument here to increase the font size. The font
argument takes a tuple of three: (family, size, style). We can omit the family and style to have the font
retain the defaults, and just give the size to make it bigger. This is why we use a tuple of (None, 12) to
modify only the size to 12.

Now that the layout is sorted, we create the only widget going into our left Frame - the Listbox. A
listbox is somewhat like an expanded dropdown list. It displays multiple elements in a box and allows a user
to select them. In this case we only want one selection at a time, so we set the selectmode to tk.SINGLE
to enforce this. We then use exportselection=False to prevent the selection from being "lost" when
another widget is clicked. We pack it up then bind a method to <<ListboxSelect>> so that we can fire
off an event when the user selects an option.

After packing our Frames we bind the keyboard shortcuts we added to our Menu items to the same
functions. With that, our __init__ is complete.

5.1.2 file_open

Our file_open method makes use of tkinter’s filedialog which takes care of opening files for us. The
askopenfilename method pops up a window with which the user can select a file and returns the path
of this file, which we store in ini_file. If the given filename does not end with ".ini" we show an error
message and bring the open window back up again. We also need to check in this loop condition that
ini_file is not empty, so that the user can use the "cancel" option to end the interaction. If the filename
is valid, we pass it off over to parse_ini_file.

5.1.3 parse_ini_file

We begin by creating an instance of a ConfigParser which is a library that will handle parsing of .ini
files into almost-dictionaries. We store this object as self.active_ini so that we can refer to it later,
then tell it to read and parse the string we got from the file open dialogue. We also store the file path in
self.active_ini_filename so that we can write to the same file later on.

After opening the file we need to clear any widgets which may still be in our right_frame. If we don’t
do this the user would still see the first file’s contents after opening a second, which would be confusing,

48 CHAPTER 5. INI FILE EDITOR

and could lead to data loss if they then saved. We achieve this by using winfo_children to get all children
of the right_frame and then calling destroy on each to remove it.

Our job now is to get the sections of the file into our Listbox. We begin by clearing the Listbox in
case there are any items left in there from previous file openings. We then enumerate over our .ini file’s
sections and insert each into our Listbox. Since the "DEFAULT" section is not returned by the call to
sections() we manually account for it afterwards if it exists. We finish up by putting the filename at the
top of the window in our file_name_label. We use ntpath to parse the file name out of the path string,
then put a colon, followed by the full path string. Now that our Listbox is populated we can display the
contents of a section to the user once they have selected one.

5.1.4 display_section_contents

We first need to check we have an .ini file to work with, and show an error message if not. We follow on
by clearing out the contents of our right Frame to ensure it is empty, and then do the same for our dictionary
of ini elements. We now need to populate our Frame with the elements in the chosen ini section.

The currently selected Listbox element is grabbed by passing the id returned by curselection() to
its get() method. Next we iterate over a sorted version of the chosen section in our parsed .ini file and
create a Label with the item’s name. The item’s value is grabbed using the current key and its type is
checked. If it’s a number, we create a Spinbox, otherwise we use a normal Entry. The numerical Spinbox
utilises an IntVar (like a StringVar for integers) to set its default value to the one read from the ini file.
We use the from_ and to arguments to set the minimum and maximum values we can spin to.

We finish off by packing our chosen element and then pairing it with the key in our ini_elements
dictionary. This allows us to keep track of which widget’s value should be associated to which config item
when saving. Speaking of saving, we also create a Button to save without going up into the Menu.

5.1.5 file_save

Before we attempt to save we again check to make sure we have a loaded .ini file to write to. We
then get the chosen section from our Listbox and iterate over the section’s items. We set each item’s
value to the value of its associated widget. We finish up by opening the file at the location stored in
active_ini_filename and telling our ConfigParser to write into it. We finally display a message to let
the user know that the file has been saved.

5.1.6 Next Iteration

The user currently has to save each section before loading the next one, otherwise any changes will be lost.
We’ll look at adjusting our ini_elements to hold all of the changed values until the program is closed.
There’s also some graphical tweaks we need to make to better handle the screen resizing.

5.2. NOW WITH CACHING AND RESIZING 49

5.2 Now With Caching and Resizing

With this iteration we hold the updated values in memory even when switching between sections. This
means the user can update as many sections as they want and will only need to save once at the end. We’ve
also updated the size of the Frames on re-size. Let’s take a look at how this is done:

1 ...
2
3 class IniEditor(tk.Tk):
4
5 def __init__(self):
6 ...
7 self.left_frame = tk.Frame(self, width=200, bg="grey")
8 self.left_frame.pack_propagate(0)
9

10 self.right_frame = tk.Frame(self, width=400, bg="lightgrey")
11 self.right_frame.pack_propagate(0)
12 ...
13 self.file_name_label.pack(side=tk.TOP, expand=1, fill=tk.X, anchor="n")
14 ...
15 self.right_frame.bind("<Configure>", self.frame_height)
16 ...
17
18 def frame_height(self, event=None):
19 new_height = self.winfo_height()
20 self.right_frame.configure(height=new_height)
21
22 def file_open(self, event=None):
23 ...
24
25 def file_save(self, event=None):
26 ...
27
28 for section in self.active_ini:
29 for key in self.active_ini[section]:
30 try:
31 self.active_ini[section][key] = self.ini_elements[section][key].get()
32 except KeyError:
33 # wasn’t changed, no need to save it
34 pass
35
36 ...
37
38 def parse_ini_file(self, ini_file):
39 ...
40
41 for index, section in enumerate(self.active_ini.sections()):
42 self.section_select.insert(index, section)
43 self.ini_elements[section] = {}
44 if "DEFAULT" in self.active_ini:
45 self.section_select.insert(len(self.active_ini.sections()) + 1, "DEFAULT")
46 self.ini_elements["DEFAULT"] = {}
47 ...
48
49 def clear_right_frame(self):
50 ...
51
52 def display_section_contents(self, event):
53 if not self.active_ini:
54 msg.showerror("No File Open", "Please open an ini file first")
55 return
56
57 chosen_section = self.section_select.get(self.section_select.curselection())
58
59 for child in self.right_frame.winfo_children():
60 child.pack_forget()

50 CHAPTER 5. INI FILE EDITOR

61
62 for key in sorted(self.active_ini[chosen_section]):
63 new_label = tk.Label(self.right_frame, text=key, font=(None, 12), bg="black",

fg="white")
64 new_label.pack(fill=tk.X, side=tk.TOP, pady=(10,0))
65
66 try:
67 section_elements = self.ini_elements[chosen_section]
68 except KeyError:
69 section_elements = {}
70
71 try:
72 ini_element = section_elements[key]
73 except KeyError:
74 value = self.active_ini[chosen_section][key]
75
76 if value.isnumeric():
77 spinbox_default = tk.IntVar(self.right_frame)
78 spinbox_default.set(int(value))
79 ini_element = tk.Spinbox(self.right_frame, from_=0, to=99999,

textvariable=spinbox_default, bg="white", fg="black", justify="
center")

80 else:
81 ini_element = tk.Entry(self.right_frame, bg="white", fg="black",

justify="center")
82 ini_element.insert(0, value)
83
84 self.ini_elements[chosen_section][key] = ini_element
85
86 ini_element.pack(fill=tk.X, side=tk.TOP, pady=(0,10))
87
88 save_button = tk.Button(self.right_frame, text="Save Changes", command=self.

file_save)
89 save_button.pack(side=tk.BOTTOM, pady=(0,20))
90
91
92 if __name__ == "__main__":
93 ...

Listing 5.2: Our Ini Editor

5.2.1 __init__ and frame_height

We’ve now removed the fixed heights from our Frames and bound a method to their <Configure> event.
This method gets the root window’s height and sets the height of the right Frame to the same value. The
left Frame also follows suit. Now when the user re-sizes the window the Frames will adjust accordingly.
Horizontal adjustment was already handled by the expand=1 on our right Frame’s pack.

We have also used the anchor argument when packing our file_name_label to fix it to the very top
of the screen.

5.2.2 parse_ini_file

Since we need to keep track of each individual section’s items, we now create an attribute for each section
in our ini_elements dictionary, which is initialised as another empty dictionary. This will be written to with
display_section_contents.

5.2.3 display_section_contents

I’ve left this entire method in for clarity, but some has stayed the same. We now unpack the widgets
associated with each section instead of destroying them so that we can retain a reference to their values.

5.2. NOW WITH CACHING AND RESIZING 51

pack_forget removes widgets from their parent but does not destroy them in memory, meaning we can
remove them from the frame without losing their values.

Within our loop we now check to see if we have elements for the chosen section already. If we do we
grab them, otherwise we stick an empty dictionary into our section_elements variable to trigger our second
except block. If we have the element already, we grab it out of ini_elements and pack it, otherwise we
create it, put it into ini_elements, and set the default just as before (except now each element is under the
key of its section name). We use try and except to catch KeyErrors here as a way of testing whether or not
the elements are already loaded in our cache (ini_elements) rather than as a way of handling something
"going wrong". You may know the python idiom "it’s easier to ask forgiveness than permission" which is
what we have applied here. Instead of trying to check whether or not the ini element has been loaded, we
simply assume it has and handle the resulting KeyError if it hasn’t.

5.2.4 file_save

Since we now store each element inside the key of its section, we simply iterate over each section and update
the active_ini accordingly.

5.2.5 Running

Nothing has changed with regards to running this iteration. You should be able to launch it as before. You
can now try changing some of the values under one section, then swapping to a different section and back
to the first, and you should see the changes you made have persisted.

5.2.6 Next Iteration

With our current app we can edit existing content but cannot create anything new. We will finish this
project off with the ability to create new .ini files, new sections and new items.

52 CHAPTER 5. INI FILE EDITOR

5.3 Our finished Ini Editor

Now complete with creating capabilities, let’s look at our finalised app:

1 ...
2
3 class CentralForm(tk.Toplevel):
4 def __init__(self, master, my_height=80):
5 super().__init__()
6 self.master = master
7
8 master_pos_x = self.master.winfo_x()
9 master_pos_y = self.master.winfo_y()

10
11 master_width = self.master.winfo_width()
12 master_height = self.master.winfo_height()
13
14 my_width = 300
15
16 pos_x = (master_pos_x + (master_width // 2)) - (my_width // 2)
17 pos_y = (master_pos_y + (master_height // 2)) - (my_height // 2)
18
19 geometry = "{}x{}+{}+{}".format(my_width, my_height, pos_x, pos_y)
20 self.geometry(geometry)
21
22
23 class AddSectionForm(CentralForm):
24 def __init__(self, master):
25 super().__init__(master)
26
27 self.title("Add New Section")
28
29 self.main_frame = tk.Frame(self, bg="lightgrey")
30 self.name_label = tk.Label(self.main_frame, text="Section Name", bg="lightgrey",

fg="black")
31 self.name_entry = tk.Entry(self.main_frame, bg="white", fg="black")
32 self.submit_button = tk.Button(self.main_frame, text="Create", command=self.

create_section)
33
34 self.main_frame.pack(expand=1, fill=tk.BOTH)
35 self.name_label.pack(side=tk.TOP, fill=tk.X)
36 self.name_entry.pack(side=tk.TOP, fill=tk.X, padx=10)
37 self.submit_button.pack(side=tk.TOP, fill=tk.X, pady=(10,0), padx=10)
38
39 def create_section(self):
40 section_name = self.name_entry.get()
41 if section_name:
42 self.master.add_section(section_name)
43 self.destroy()
44 msg.showinfo("Section Added", "Section " + section_name + " successfully

added")
45 else:
46 msg.showerror("No Name", "Please enter a section name", parent=self)
47
48
49 class AddItemForm(CentralForm):
50 def __init__(self, master):
51
52 my_height = 120
53
54 super().__init__(master, my_height)
55
56 self.title("Add New Item")
57
58 self.main_frame = tk.Frame(self, bg="lightgrey")

5.3. OUR FINISHED INI EDITOR 53

59 self.name_label = tk.Label(self.main_frame, text="Item Name", bg="lightgrey", fg=
"black")

60 self.name_entry = tk.Entry(self.main_frame, bg="white", fg="black")
61 self.value_label = tk.Label(self.main_frame, text="Item Value", bg="lightgrey",

fg="black")
62 self.value_entry = tk.Entry(self.main_frame, bg="white", fg="black")
63 self.submit_button = tk.Button(self.main_frame, text="Create", command=self.

create_item)
64
65 self.main_frame.pack(fill=tk.BOTH, expand=1)
66 self.name_label.pack(side=tk.TOP, fill=tk.X)
67 self.name_entry.pack(side=tk.TOP, fill=tk.X, padx=10)
68 self.value_label.pack(side=tk.TOP, fill=tk.X)
69 self.value_entry.pack(side=tk.TOP, fill=tk.X, padx=10)
70 self.submit_button.pack(side=tk.TOP, fill=tk.X, pady=(10,0), padx=10)
71
72 def create_item(self):
73 item_name = self.name_entry.get()
74 item_value = self.value_entry.get()
75 if item_name and item_value:
76 self.master.add_item(item_name, item_value)
77 self.destroy()
78 msg.showinfo("Item Added", item_name + " successfully added")
79 else:
80 msg.showerror("Missing Info", "Please enter a name and value", parent=self)
81
82
83 class IniEditor(tk.Tk):
84
85 def __init__(self):
86 ...
87 self.file_menu = tk.Menu(self.menubar, tearoff=0, bg="lightgrey", fg="black")
88 ...
89 self.bind("<Control-n>", self.file_new)
90 ...
91
92 def add_section_form(self):
93 if not self.active_ini:
94 msg.showerror("No File Open", "Please open an ini file first")
95 return
96
97 AddSectionForm(self)
98
99 def add_section(self, section_name):

100 self.active_ini[section_name] = {}
101 self.populate_section_select_box()
102
103 def frame_height(self, event=None):
104 ...
105
106 def file_new(self, event=None):
107 ini_file = filedialog.asksaveasfilename(filetypes=[("Configuration file", "*.ini"

)])
108
109 while ini_file and not ini_file.endswith(".ini"):
110 msg.showerror("Wrong Filetype", "Filename must end in .ini")
111 ini_file = filedialog.askopenfilename()
112
113 if ini_file:
114 self.parse_ini_file(ini_file)
115
116 def file_open(self, event=None):
117 ini_file = filedialog.askopenfilename(filetypes=[("Configuration file", "*.ini")

])
118 ...
119

54 CHAPTER 5. INI FILE EDITOR

120 def file_save(self, event=None):
121 ...
122
123 def add_item_form(self):
124 AddItemForm(self)
125
126 def add_item(self, item_name, item_value):
127 chosen_section = self.section_select.get(self.section_select.curselection())
128 self.active_ini[chosen_section][item_name] = item_value
129 self.display_section_contents()
130
131 def parse_ini_file(self, ini_file):
132 self.active_ini = cp.ConfigParser()
133 self.active_ini.read(ini_file)
134 self.active_ini_filename = ini_file
135 self.populate_section_select_box()
136
137 file_name = ": ".join([ntpath.basename(ini_file), ini_file])
138 self.file_name_var.set(file_name)
139
140 self.clear_right_frame()
141
142 def clear_right_frame(self):
143 ...
144
145 def populate_section_select_box(self):
146 self.section_select.delete(0, tk.END)
147
148 for index, section in enumerate(self.active_ini.sections()):
149 self.section_select.insert(index, section)
150 self.ini_elements[section] = {}
151 if "DEFAULT" in self.active_ini:
152 self.section_select.insert(len(self.active_ini.sections()) + 1, "DEFAULT")
153 self.ini_elements["DEFAULT"] = {}
154
155 def display_section_contents(self, event=None):
156 ...
157
158 save_button = tk.Button(self.right_frame, text="Save Changes", command=self.

file_save)
159 save_button.pack(side=tk.BOTTOM, pady=(0,20))
160
161 add_button = tk.Button(self.right_frame, text="Add Item", command=self.

add_item_form)
162 add_button.pack(side=tk.BOTTOM, pady=(0,20))
163
164
165 if __name__ == "__main__":
166 ...

Listing 5.3: Our Ini Editor

5.3.1 CentralForm

To save a bunch of __init__ method duplication we’ve got a base-class for a form which will appear in
the center of its parent window. The __init__ method begins by grabbing the x and y co-ordinates of its
master (our IniEditor instance) as well as its width and height. It then has variables representing its own
width and height which it uses to calculate where to place itself in order to be in the center of the master
and stores these in pos_x and pos_y. It finally calls the .geometry() method on a formatted string of
(width x height + x + y) to define its size and position in one go. Now we have this we can create other
windows which inherit from this class, and as long as they call super().__init__(master) they will be
placed in the center of their master. Let’s look at our 2 child classes now.

5.3. OUR FINISHED INI EDITOR 55

5.3.2 AddSectionForm and AddItemForm

Both of these windows initialise by creating and packing some Labels and Entries followed by a submit
Button. Both then have a method attached to their Button which grabs the values from the Entries and
sends them over to the master if they aren’t blank. When showing the error messagebox we specify the
parent as self to ensure that it displays on top of our forms. Since the forms and messageboxes both
display in the center of the master, our error message would appear behind our forms since by default they
are parented to the main Tk object. By passing in the parent argument as self we ensure they appear in
front of our form. We don’t need to do this on success as we destroy the form object beforehand anyway.

5.3.3 IniEditor

__init__ and file_new

We’ve now added a "new" option to our file menu and given it a keyboard shortcut. These both call
our file_new method. This method uses the asksaveasfilename method of the filedialog to grab a
filename from the user, which must end in .ini as before, and then parses it. We’ve passed in the filetypes
argument to force the file to end with .ini this time (and done the same in file_open too). Even thought
this new file will be blank, passing it to our parse_ini_file method still sets it up in our active_ini and
active_ini_filename variables, as well as putting the filename at the top of our window.

Adding items and sections

Our add_*_form methods both just create an instance of the relevant form windows, which then in turn call
their add_* methods on the master. Our add_section_form needs to check there is an .ini file open before
running, but our add_item_form doesn’t need to as the Button won’t be rendered without an open file.

add_section simply adds a new empty dictionary into our active_ini with the key matching the text
entered into the form. It then calls a new method - populate_section_select_box - which clears and
re-populates the Listbox. It’s moved into its own method since we now do this in two places.

add_item is similar - but it needs to get the current section from our Listbox, and then add a key-value
pair to it’s dictionary. We then call display_section_contents so that the new item appears on the users
screen right away and we get its widget into our cache for saving.

display_section_contents

The only change here is to add the "Add Item" Button which calls add_item_form. Even though we pack
this after our save_button it will appear above it, due to the use of tk.BOTTOM.

That’s it for development of our .ini file editor. We now have an application which allows us to change
specific values without having to wade through the large blocks of comments often written in .ini files.
Along the way we’ve learned how to use Listboxes to allow the user to make choices which affect the GUI,
and Spinboxes to allow for precision when adjusting numbers. No more typos when trying to increase a 2
to a 3 and ending up with 23 instead!

5.3.4 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Make the right Frame scrollable using a Canvas (remember chapter 2?).

• Alter the running code to allow the user to launch the application with a specific file from the command
line, such as "python inifileeditor.py test.ini"

• Add deletion functionality to complete all 4 parts of CRUD (Create, Read, Update, Delete).

Chapter 6

A Python Text Editor With
Autocomplete and Syntax Highlighting

In this chapter we’ll be making a simple Python editor complete with syntax highlighting and some basic
auto-completion. Here we’ll learn about:

• More advanced features of the Text widget.

• More advanced event binding.

• Using Menus outside of a top bar.

• Using tags.

• Overriding some of the window manager’s event calls.

6.1 Basic Functionality and Autocompletion

Figure 6.1: Our Text Editor.

56

6.1. BASIC FUNCTIONALITY AND AUTOCOMPLETION 57

1 import tkinter as tk
2 from tkinter import filedialog
3 from functools import partial
4
5 class Editor(tk.Tk):
6 def __init__(self):
7 super().__init__()
8
9 self.FONT_SIZE = 12

10 self.AUTOCOMPLETE_WORDS = ["def", "import", "if", "else", "while", "for","try:",
"except:", "print(", "True", "False"]

11 self.WINDOW_TITLE = "Text Editor"
12
13 self.open_file = ""
14
15 self.title(self.WINDOW_TITLE)
16 self.geometry("800x600")
17
18 self.menubar = tk.Menu(self, bg="lightgrey", fg="black")
19
20 self.file_menu = tk.Menu(self.menubar, tearoff=0, bg="lightgrey", fg="black")
21 self.file_menu.add_command(label="New", command=self.file_new, accelerator="Ctrl+

N")
22 self.file_menu.add_command(label="Open", command=self.file_open, accelerator="

Ctrl+O")
23 self.file_menu.add_command(label="Save", command=self.file_save, accelerator="

Ctrl+S")
24
25 self.menubar.add_cascade(label="File", menu=self.file_menu)
26
27 self.configure(menu=self.menubar)
28
29 self.main_text = tk.Text(self, bg="white", fg="black", font=("Ubuntu Mono", self.

FONT_SIZE))
30
31 self.main_text.pack(expand=1, fill=tk.BOTH)
32
33 self.main_text.bind("<space>", self.destroy_autocomplete_menu)
34 self.main_text.bind("<KeyRelease>", self.display_autocomplete_menu)
35 self.main_text.bind("<Tab>", self.insert_spaces)
36
37 self.bind("<Control-s>", self.file_save)
38 self.bind("<Control-o>", self.file_open)
39 self.bind("<Control-n>", self.file_new)
40
41 def file_new(self, event=None):
42 file_name = filedialog.asksaveasfilename()
43 if file_name:
44 self.open_file = file_name
45 self.main_text.delete(1.0, tk.END)
46 self.title(" - ".join([self.WINDOW_TITLE, self.open_file]))
47
48 def file_open(self, event=None):
49 file_to_open = filedialog.askopenfilename()
50
51 if file_to_open:
52 self.open_file = file_to_open
53 self.main_text.delete(1.0, tk.END)
54
55 with open(file_to_open, "r") as file_contents:
56 file_lines = file_contents.readlines()
57 if len(file_lines) > 0:
58 for index, line in enumerate(file_lines):
59 index = float(index) + 1.0
60 self.main_text.insert(index, line)
61

58CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

62 self.title(" - ".join([self.WINDOW_TITLE, self.open_file]))
63
64 def file_save(self, event=None):
65 if not self.open_file:
66 new_file_name = filedialog.asksaveasfilename()
67 if new_file_name:
68 self.open_file = new_file_name
69
70 if self.open_file:
71 new_contents = self.main_text.get(1.0, tk.END)
72 with open(self.open_file, "w") as open_file:
73 open_file.write(new_contents)
74
75 def insert_spaces(self, event=None):
76 self.main_text.insert(tk.INSERT, " ")
77
78 return "break"
79
80 def get_menu_coordinates(self):
81 bbox = self.main_text.bbox(tk.INSERT)
82 menu_x = bbox[0] + self.winfo_x() + self.main_text.winfo_x()
83 menu_y = bbox[1] + self.winfo_y() + self.main_text.winfo_y() + self.FONT_SIZE + 2
84
85 return (menu_x, menu_y)
86
87 def display_autocomplete_menu(self, event=None):
88 current_index = self.main_text.index(tk.INSERT)
89 start = self.adjust_floating_index(current_index)
90
91 try:
92 currently_typed_word = self.main_text.get(start + " wordstart", tk.INSERT)
93 except tk.TclError:
94 currently_typed_word = ""
95
96 currently_typed_word = str(currently_typed_word).strip()
97
98 if currently_typed_word:
99 self.destroy_autocomplete_menu()

100
101 suggestions = []
102 for word in self.AUTOCOMPLETE_WORDS:
103 if word.startswith(currently_typed_word) and not currently_typed_word ==

word:
104 suggestions.append(word)
105
106 if len(suggestions) > 0:
107 x, y = self.get_menu_coordinates()
108 self.complete_menu = tk.Menu(self, tearoff=0, bg="lightgrey", fg="black")
109
110 for word in suggestions:
111 insert_word_callback = partial(self.insert_word, word=word, part=

currently_typed_word, index=current_index)
112 self.complete_menu.add_command(label=word, command=

insert_word_callback)
113
114 self.complete_menu.post(x, y)
115 self.main_text.bind("<Down>", self.focus_menu_item)
116
117 def destroy_autocomplete_menu(self, event=None):
118 try:
119 self.complete_menu.destroy()
120 self.main_text.unbind("<Down>")
121 self.main_text.focus_force()
122 except AttributeError:
123 pass
124

6.1. BASIC FUNCTIONALITY AND AUTOCOMPLETION 59

125 def insert_word(self, word, part, index):
126 amount_typed = len(part)
127 remaining_word = word[amount_typed:]
128 remaining_word_offset = " +" + str(len(remaining_word)) + "c"
129 self.main_text.insert(index, remaining_word)
130 self.main_text.mark_set(tk.INSERT, index + remaining_word_offset)
131 self.destroy_autocomplete_menu()
132 self.main_text.focus_force()
133
134 def adjust_floating_index(self, number):
135 indices = number.split(".")
136 x_index = indices[0]
137 y_index = indices[1]
138 y_as_number = int(y_index)
139 y_previous = y_as_number - 1
140
141 return ".".join([x_index, str(y_previous)])
142
143 def focus_menu_item(self, event=None):
144 try:
145 self.complete_menu.focus_force()
146 self.complete_menu.entryconfig(0, state="active")
147 except tk.TclError:
148 pass
149
150 if __name__ == "__main__":
151 editor = Editor()
152 editor.mainloop()

Listing 6.1: Text Editor

6.1.1 __init__

We begin with some constants. FONT_SIZE will be used to adjust the positioning of the autocomplete menu
(and also the font size used in our editor, as you probably guessed). Next is the AUTOCOMPLETE_WORDS list
which holds all of the words which we wish to autocomplete. Finally is the self-explanitory WINDOW_TITLE.
We also define open_file which will be a string representing the path of our currently opened file (much
like last chapter) then set the title and geometry.

We then move on to our menu bar, which is much the same as the one from last chapter. We create
the new, open, and save buttons which are fairly standard for text editors.

The last thing we need is the main area to enter text, which is achieved using a Text widget. We specify
the colours and the font (if you don’t have ubuntu mono feel free to change this) and pack it to take up as
much space as it can with expand=1 and fill=tk.BOTH. We finish up by binding some methods to space,
tab, and KeyRelease (each will be covered below) as well as the open, new, and save bindings from our
file_menu.

6.1.2 Handling Files

file_new sets the value of our open_file to the one returned by asksaveasfilename and empties our
Text area before changing the window title to display the new file’s path.

file_open uses askopenfilename to grab an existing file name and sets it as our open_file. It then
clears the contents of our Text area to get rid of any existing text in there. Afterwards the file is opened in
read mode and we obtain a list of each line with readlines(). Each line is inserted into our Text area at
the relevant index. We add 1.0 to the float value of the list index because tkinter’s indexing starts at
1.0, whereas python’s list indexing begins at 0. We then finish by displaying the open file in the window’s
title as before.

60CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

file_save begins by checking if we have an open_file, and if not will try and get one with asksaveasfilename
(). If that was successful, we grab the text out of our Text area and write it into our opened file.

6.1.3 Autocompletion

display_autocomplete_menu

We’ll start off with display_autocomplete_menu which is bound to <KeyRelease>, meaning it’s called
every time a key is typed into our Text area. We begin by grabbing the current index of the cursor with
index(tk.INSERT). This is returned in a string of the format "x.y" with x as the line and y as the character
offset. For example, the first character of the second line is "2.1" and the 14th character of line 12 is
"12.14". The reason we need this is to try and grab the word which is currently being typed by the user.
We need to go back one character in order to do this, which is where adjust_floating_index comes in.
In adjust_floating_index we split off the string on the point to get the x and y indices. Then we need
to remove 1 from y_index and put it back together as a string in the form of "x.y". With this done, we
can use tkinter’s magic word "wordstart" to get the beginning of the word being typed. This is combined
with the INSERT position of the cursor to grab the currently_typed_word. This may be hard to grasp, so
here’s a picture which will hopefully clear it up a bit:

Figure 6.2: Finding our current word boundaries. Word is the pink arrow.

Now that we have the currently typed word (or not, if there was a TclError raised along the way due
to a bad index) we begin by destroying the autocomplete menu if it is already active, since we will only
want one up at a time, and then we build a list of suggestions based on the current word. We do this by
looping through our AUTOCOMPLETE_WORDS and appending ones which start with what the user is currently
typing (but not any which are equal to it, since then there’s no need to "complete" what they’ve already
typed). If there are any matching suggestions then we need to show the menu. We get the coordinates
with get_menu_coordinates (covered next) and instantiate a new Menu to hold each suggestion.

We loop through each suggestion and create a partial of insert_word (covered below) passing in the
suggested word, the currently-being-typed word and the index of our cursor. We then add a menu item for
this word with the partial as its command. After all suggestions are added, we use post(x, y) to place
our menu exactly at the calculated coordinates and bind the down arrow key so that it focuses the first
menu item.

get_menu_coordinates

In order to calculate where to put our autocomplete menu we use the Text area’s bbox method to get the
bounding box of the cursor position (tk.INSERT). We then add on the x and y position of our main window
to ensure it displays within the application itself, and add some extra onto the y so that our menu doesn’t
cover up what the user is currently typing.

insert_word

In order to complete the word being typed, we need to know how much has already been entered. We get
this with len(part) and use it to get the rest of the word which needs to be inserted. We then need to

6.1. BASIC FUNCTIONALITY AND AUTOCOMPLETION 61

build another of tkinter’s magic strings to tell it how many characters are being inserted. The format
"+nc" implies n characters ahead of the given index, so "+2c" goes 2 characters forward.

With all of that figured out we insert the rest of the word at the current cursor’s position and then
move the cursor forward the appropriate number of characters with mark_set so that it is at the end of the
newly-completed word. We then destroy the autocomplete menu and force the focus back to our Text
area so that the user can continue typing.

Focusing and Destroying the Menu

focus_menu_item forces focus onto the autocomplete menu and sets its first item as active so the user can
select it with Enter. If we somehow end up here with no menu (or an empty menu) then we will get a
TclError, which we can just ignore and do nothing.

destroy_autocomplete_menu calls destroy on our menu and unbinds the down arrow from our Text
area. If the menu doesn’t exist then the TclError is caught and nothing will happen. We finally force the
focus back to our Text area so that the user can continue typing.

6.1.4 Spaces over Tabs!?

There’s a method called insert_spaces bound to the Tab key which inserts 4 spaces and uses return "
break" to prevent the default behaviour of said key. This is to demonstrate how to make an event binding
override the default key behaviour. Using return "break" we end the chain of events caused by pressing
the Tab key, meaning no Tab character is inserted. Most editors will offer the option of inserting spaces
when pressing Tab, and using 4 spaces conforms to PEP-8.

6.1.5 Next Iteration

Now it’s time to utilise some tags to get syntax highlighting working.

62CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

6.2 Syntax Highlighting

With this iteration we have some syntax highlighting for strings, numbers, decorators, and various language
keywords. A lot of the code has stayed the same, just a small addition to file_open to highlight files upon
opening them.

1 import re
2 ...
3
4 class Editor(tk.Tk):
5 def __init__(self):
6 ...
7
8 self.AUTOCOMPLETE_WORDS = [
9 "def", "import", "as", "if", "elif", "else", "while",

10 "for", "try", "except", "print", "True", "False",
11 "self", "None", "return", "with"
12]
13 self.KEYWORDS_1 = ["import", "as", "from", "def", "try", "except", "self"]
14 self.KEYWORDS_FLOW = ["if", "else", "elif", "try", "except", "for", "in", "while"

, "return", "with"]
15
16 self.SPACES_REGEX = re.compile("^\s*")
17 self.STRING_REGEX_SINGLE = re.compile("’[^’\r\n]*’")
18 self.STRING_REGEX_DOUBLE = re.compile(’"[^"\r\n]*"’)
19 self.NUMBER_REGEX = re.compile(r"\b(?=\(*)\d+\.?\d*(?=\)*\,*)\b")
20 self.KEYWORDS_REGEX = re.compile("(?=\(*)(?<![a-z])(None|True|False)(?=\)*\,*)")
21 self.SELF_REGEX = re.compile("(?=\(*)(?<![a-z])(self)(?=\)*\,*)")
22 self.FUNCTIONS_REGEX = re.compile("(?=\(*)(?<![a-z])(print|list|dict|set|int|str)

(?=\()")
23
24 self.REGEX_TO_TAG = {
25 self.STRING_REGEX_SINGLE : "string",
26 self.STRING_REGEX_DOUBLE : "string",
27 self.NUMBER_REGEX : "digit",
28 self.KEYWORDS_REGEX : "keywordcaps",
29 self.SELF_REGEX : "keyword1",
30 self.FUNCTIONS_REGEX : "keywordfunc",
31 }
32
33 ...
34
35 self.main_text.tag_config("keyword1", foreground="orange")
36 self.main_text.tag_config("keywordcaps", foreground="navy")
37 self.main_text.tag_config("keywordflow", foreground="purple")
38 self.main_text.tag_config("keywordfunc", foreground="darkgrey")
39 self.main_text.tag_config("decorator", foreground="khaki")
40 self.main_text.tag_config("digit", foreground="red")
41 self.main_text.tag_config("string", foreground="green")
42
43 ...
44 self.main_text.bind("<KeyRelease>", self.on_key_release)
45 self.main_text.bind("<Escape>", self.destroy_autocomplete_menu)
46 ...
47
48 def file_new(self, event=None):
49 ...
50
51 def file_open(self, event=None):
52 ...
53
54 final_index = self.main_text.index(tk.END)
55 final_line_number = int(final_index.split(".")[0])
56
57 for line_number in range(final_line_number):
58 line_to_tag = ".".join([str(line_number), "0"])

6.2. SYNTAX HIGHLIGHTING 63

59 self.tag_keywords(None, line_to_tag)
60
61
62 def file_save(self, event=None):
63 ...
64
65 def insert_spaces(self, event=None):
66 ...
67
68 def get_menu_coordinates(self):
69 ...
70
71 def display_autocomplete_menu(self, event=None):
72 ...
73 self.complete_menu.post(x, y)
74 self.complete_menu.bind("<Escape>", self.destroy_autocomplete_menu)
75 self.main_text.bind("<Down>", self.focus_menu_item)
76
77 def destroy_autocomplete_menu(self, event=None):
78 ...
79
80 def insert_word(self, word, part, index):
81 ...
82
83 def adjust_floating_index(self, number):
84 ...
85
86 def focus_menu_item(self, event=None):
87 ...
88
89 def tag_keywords(self, event=None, current_index=None):
90 if not current_index:
91 current_index = self.main_text.index(tk.INSERT)
92 line_number = current_index.split(".")[0]
93 line_beginning = ".".join([line_number, "0"])
94 line_text = self.main_text.get(line_beginning, line_beginning + " lineend")
95 line_words = line_text.split()
96 number_of_spaces = self.number_of_leading_spaces(line_text)
97 y_position = number_of_spaces
98
99 for tag in self.main_text.tag_names():

100 self.main_text.tag_remove(tag, line_beginning, line_beginning + " lineend")
101
102 self.add_regex_tags(line_number, line_text)
103
104 for word in line_words:
105 stripped_word = word.strip("():,")
106 word_start = str(y_position)
107 word_end = str(y_position + len(stripped_word))
108 start_index = ".".join([line_number, word_start])
109 end_index = ".".join([line_number, word_end])
110
111 if stripped_word in self.KEYWORDS_1:
112 self.main_text.tag_add("keyword1", start_index, end_index)
113 elif stripped_word in self.KEYWORDS_FLOW:
114 self.main_text.tag_add("keywordflow", start_index, end_index)
115 elif stripped_word.startswith("@"):
116 self.main_text.tag_add("decorator", start_index, end_index)
117
118 y_position += len(word) + 1
119
120 def number_of_leading_spaces(self, line):
121 spaces = re.search(self.SPACES_REGEX, line)
122 if spaces.group(0) is not None:
123 number_of_spaces = len(spaces.group(0))
124 else:

64CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

125 number_of_spaces = 0
126
127 return number_of_spaces
128
129 def add_regex_tags(self, line_number, line_text):
130 for regex, tag in self.REGEX_TO_TAG.items():
131 for match in regex.finditer(line_text):
132 start, end = match.span()
133 start_index = ".".join([line_number, str(start)])
134 end_index = ".".join([line_number, str(end)])
135 self.main_text.tag_add(tag, start_index, end_index)
136
137 def on_key_release(self, event=None):
138 if not event.keysym in ("Up", "Down", "Left", "Right", "BackSpace", "Delete", "

Escape"):
139 self.display_autocomplete_menu()
140 self.tag_keywords()
141
142 if __name__ == "__main__":
143 ...

Listing 6.2: Text Editor

6.2.1 __init__

We’ve got some more autocomplete words now as well as two more lists which separate them out a bit.
This is to avoid colouring all keywords with the same colour, which looks horrible in my opinion. We then
have a big pile of regexes which will match spaces, strings, numbers and keywords. I will try to explain
each below. After that we’ve got a dictionary mapping the regexes to strings, which are some of the tag
names defined below. We use tag_config to define a tag represented by a string (the first argument) and
add some styling associated with it (the proceeding keyword arguments). Anything which is given the tag
"keyword1" will be orange, for example.

A tag is essentially just a group of properties which can be assigned to certain characters within the
Text area. In this instance we are changing the colour of certain words to achieve syntax highlighting.

We’ve adjusted the method bound to <KeyRelease> to a new one, since we now want to call 2 methods
each time. This will be covered later.

6.2.2 Regexes Explained

1 self.STRING_REGEX_SINGLE = "’[^’\r\n]*’"
2 # a literal ’
3 # anything which isn’t ’ or a newline 0 or more times
4 # a literal ’
5
6 self.STRING_REGEX_DOUBLE = re.compile(’"[^"\r\n]*"’)
7 # a literal ",
8 # anything which isn’t " or a newline 0 or more times
9 # a literal "

10
11 self.NUMBER_REGEX = re.compile(
12 \b # begin with a word boundry (punctuation or space)
13 (?=\(*) # match but don’t highlight 0 or more opening brackets
14 \d+\.?\d* # match 1 or more numbers, 0 or 1 decimal points, 0 or more numbers
15 (?=\)*\,*) # match but don’t highlight 0 or more closing brackets or commas
16 \b # end with a word boundry (punctuation or space)
17)
18
19
20 self.KEYWORDS_REGEX = re.compile(

6.2. SYNTAX HIGHLIGHTING 65

21 (?=\(*) # match but don’t highlight 0 or more opening brackets
22 (?<![a-z]) # don’t match if it begins with an alphabet character
23 (None|True|False) # match None or True or False
24 (?=\)*\,*) # match but don’t highlight 0 or more closing brackets or commas
25)
26
27 self.SELF_REGEX = re.compile(
28 (?=\(*) # same as above
29 (?<![a-z]) # same as above
30 (self) # match self
31 (?=\)*\,*) # same as above
32)
33
34
35 self.FUNCTIONS_REGEX = re.compile(
36 (?=\(*) # same as above
37 (?<![a-z]) # same as above
38 (print|list|dict|set|int|str) # literal match print, list, dict, etc.
39 (?=\() # match but dont capture 1 opening bracket
40)

Listing 6.3: Regex Explanations

6.2.3 file_open

After all of the previous code for opening files, we need to run them through our tag_keywords method
to apply the syntax highlighting. Since this function works line-by-line, we get the index of the end of our
file and split the x off of tkinter’s "x.y" indexing format. This gives us the number of the last line, which
is also the number of lines in the document. We can then iterate over the range of that number, build a
tkinter index of "line_number.0" and pass it into our tag_keywords method. Speaking of which:

6.2.4 tag_keywords

The main bulk of this iteration is right here. As mentioned, this method works on a line-by-line basis, so we
need to check whether we have a line number passed in. If not, we use the line with the cursor on it. We
again split off the x and join it with a 0 to get the tkinter index of the line’s beginning. We combine that
with the magic word "lineend" within get to get the contents of the whole line. We can then use split()
to get each individual "word" on the line. We grab the number of leading spaces on the line so that we can
adjust our y position to the start of the actual text.

With all of that set up, we remove all tags on the current line so that we can overwrite them with new
ones. We do this by looping through all of our tag_names() and calling tag_remove on the entire line.
Without this, when the user types "as" it will become highlighted because it is a keyword. If they then
continue to write the full word "assumption" the first "as" will remain highlighted, which will look wrong
and be offputting.

The first thing to do is to add the regex-specified tags. Let’s jump to that method now:

add_regex_tags

We iterate over our dictionary of regex-to-tag mappings and use find_iter over the current line to see
if we have any matches. If we do, the span() function handily gives us the start and end indexes of the
entire string at which this match occcurs. We join these to the line number with a dot to match tkinter’s
indexing and add the associated tag in that range.

back to tag_keywords

Now that we’ve covered the more complex cases we can do a slightly more manual approach to finish off
the remaining keyword types. We strip off brackets, colons, and commas because they are part of some
keywords (if:, else:) but we don’t want them to be coloured. We then use the current y position as the

66CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

word’s start and add the length to it to get the word’s end. We join it with the line number to get an index
as usual so that we can begin comparison.

All we have to do is check whether the word is in one of our keywords lists, and if it is, assign the
relevant tag to its range. We just use startswith("@") to find a decorator for simplicity. We then update
the current y position with the length of the word plus one (for the space character).

That’s all there is to applying the syntax highlighting to our Text area. The majority of the work is
figuring out how to correctly keep track of the relevant tkinter index of the word you wish to colour.

Why Two Methods of Tagging?

Certain keywords should not be observed as part of a bigger "word". Take "if" for example. It should
generally appear by itself (aside from the colon, which we can easily strip off). Now consider "None".
"None" will often get merged into a bigger "word". For example: self.add_task(None, task_text,
True). Here there is no spacing around "None", which is the correct python styling, but when splitting
this line we get one big chunk of self.add_task(None, which is not equal to "None". We can’t pick out
the "None" easily here, which is why we need to use regex.

Strings and numbers are also different beasts entirely. You can’t really build a list of all possible strings
or numbers, so regex is a must in order to match them.

6.2.5 display_autocomplete_menu, number_of_leading_spaces, and on_key_release

display_autocomplete_menu now has destroy_autocomplete_menu bound to Escape so that the user can
close it and continue typing. The same binding was added to our main_text in __init__.

number_of_leading_spaces is a method taken from an older project of mine. It uses a regex matching
0 or more space characters at the start of a string. If it finds a match, we return the length of the match,
otherwise 0.

on_key_release is just created to call two methods on the <KeyRelease> event. It displays the auto-
complete menu as before as well as updating our syntax highlighting tags with tag_keywords. We do not
want to display the autocomplete menu on a few specific key presses, including the arrow keys, backspace,
and escape, so we will check the event.keysym before calling display_autocomplete_menu. event.keysym
returns a human-readable representation of the key which triggered the event.

6.2.6 Next Iteration

We’ll finish off our text editor by adding some standard features to bring it in line with other text editors,
including a scroll bar, line numbers, select-all, find, and an Edit menu.

6.3. OUR FINISHED EDITOR 67

6.3 Our Finished Editor

1 ...
2 import tkinter.messagebox as msg
3
4 class FindPopup(tk.Toplevel):
5 def __init__(self, master):
6 super().__init__()
7
8 self.master = master
9

10 self.title("Find in file")
11 self.center_window()
12
13 self.transient(master)
14
15 self.matches_are_highlighted = True
16
17 self.main_frame = tk.Frame(self, bg="lightgrey")
18 self.button_frame = tk.Frame(self.main_frame, bg="lightgrey")
19
20 self.find_label = tk.Label(self.main_frame, text="Find: ", bg="lightgrey", fg="

black")
21 self.find_entry = tk.Entry(self.main_frame, bg="white", fg="black")
22 self.find_button = tk.Button(self.button_frame, text="Find All", bg="lightgrey",

fg="black", command=self.find)
23 self.next_button = tk.Button(self.button_frame, text="Next", bg="lightgrey", fg="

black", command=self.jump_to_next_match)
24 self.cancel_button = tk.Button(self.button_frame, text="Cancel", bg="lightgrey",

fg="black", command=self.cancel)
25
26 self.main_frame.pack(fill=tk.BOTH, expand=1)
27
28 self.find_button.pack(side=tk.LEFT, pady=(0,10), padx=(20,20))
29 self.next_button.pack(side=tk.LEFT, pady=(0,10), padx=(15,20))
30 self.cancel_button.pack(side=tk.LEFT, pady=(0,10), padx=(15,0))
31 self.button_frame.pack(side=tk.BOTTOM, fill=tk.BOTH)
32 self.find_label.pack(side=tk.LEFT, fill=tk.X, padx=(20,0))
33 self.find_entry.pack(side=tk.LEFT, fill=tk.X, expand=1, padx=(0,20))
34
35 self.find_entry.focus_force()
36 self.find_entry.bind("<Return>", self.jump_to_next_match)
37 self.find_entry.bind("<KeyRelease>", self.matches_are_not_highlighted)
38 self.bind("<Escape>", self.cancel)
39
40 self.protocol("WM_DELETE_WINDOW", self.cancel)
41
42 def find(self, event=None):
43 text_to_find = self.find_entry.get()
44 if text_to_find and not self.matches_are_highlighted:
45 self.master.remove_all_find_tags()
46 self.master.highlight_matches(text_to_find)
47 self.matches_are_highlighted = True
48
49 def jump_to_next_match(self, event=None):
50 text_to_find = self.find_entry.get()
51 if text_to_find:
52 if not self.matches_are_highlighted:
53 self.find()
54 self.master.next_match()
55
56 def cancel(self, event=None):
57 self.master.remove_all_find_tags()
58 self.destroy()
59
60 def matches_are_not_highlighted(self, event):

68CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

61 key_pressed = event.keysym
62 if not key_pressed == "Return":
63 self.matches_are_highlighted = False
64
65 def center_window(self):
66 master_pos_x = self.master.winfo_x()
67 master_pos_y = self.master.winfo_y()
68
69 master_width = self.master.winfo_width()
70 master_height = self.master.winfo_height()
71
72 my_width = 300
73 my_height = 100
74
75 pos_x = (master_pos_x + (master_width // 2)) - (my_width // 2)
76 pos_y = (master_pos_y + (master_height // 2)) - (my_height // 2)
77
78 geometry = "{}x{}+{}+{}".format(my_width, my_height, pos_x, pos_y)
79 self.geometry(geometry)
80
81
82
83 class Editor(tk.Tk):
84 def __init__(self):
85 ...
86 self.edit_menu = tk.Menu(self.menubar, tearoff=0, bg="lightgrey", fg="black")
87 self.edit_menu.add_command(label="Cut", command=self.edit_cut, accelerator="Ctrl+

X")
88 self.edit_menu.add_command(label="Paste", command=self.edit_paste, accelerator="

Ctrl+V")
89 self.edit_menu.add_command(label="Undo", command=self.edit_undo, accelerator="

Ctrl+Z")
90 self.edit_menu.add_command(label="Redo", command=self.edit_redo, accelerator="

Ctrl+Y")
91
92 self.menubar.add_cascade(label="File", menu=self.file_menu)
93 self.menubar.add_cascade(label="Edit", menu=self.edit_menu)
94
95 ...
96
97 self.line_numbers = tk.Text(self, bg="lightgrey", fg="black", width=6)
98 self.line_numbers.insert(1.0, "1 \n")
99 self.line_numbers.configure(state="disabled")

100 self.line_numbers.pack(side=tk.LEFT, fill=tk.Y)
101
102 ...
103
104 self.scrollbar = tk.Scrollbar(self, orient="vertical", command=self.

scroll_text_and_line_numbers)
105 self.main_text.configure(yscrollcommand=self.scrollbar.set)
106
107 self.scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
108 self.main_text.pack(expand=1, fill=tk.BOTH)
109
110 ...
111 self.main_text.tag_config("findmatch", background="yellow")
112
113 ...
114
115 self.main_text.bind("<Control-y>", self.edit_redo)
116
117 ...
118
119 self.bind("<Control-a>", self.select_all)
120 self.bind("<Control-f>", self.show_find_window)
121

6.3. OUR FINISHED EDITOR 69

122 self.main_text.bind("<MouseWheel>", self.scroll_text_and_line_numbers)
123 self.main_text.bind("<Button-4>", self.scroll_text_and_line_numbers)
124 self.main_text.bind("<Button-5>", self.scroll_text_and_line_numbers)
125
126 self.line_numbers.bind("<MouseWheel>", self.skip_event)
127 self.line_numbers.bind("<Button-4>", self.skip_event)
128 self.line_numbers.bind("<Button-5>", self.skip_event)
129
130 def skip_event(self, event=None):
131 return "break"
132
133 def scroll_text_and_line_numbers(self, *args):
134 try:
135 # from scrollbar
136 self.main_text.yview_moveto(args[1])
137 self.line_numbers.yview_moveto(args[1])
138 except IndexError:
139 #from MouseWheel
140 event = args[0]
141 if event.delta:
142 move = -1*(event.delta/120)
143 else:
144 if event.num == 5:
145 move = 1
146 else:
147 move = -1
148
149 self.main_text.yview_scroll(int(move), "units")
150 self.line_numbers.yview_scroll(int(move), "units")
151
152 return "break"
153
154 def file_new(self, event=None):
155 ...
156
157 def file_open(self, event=None):
158 file_to_open = filedialog.askopenfilename()
159
160 if file_to_open:
161 self.open_file = file_to_open
162 self.main_text.delete(1.0, tk.END)
163
164 with open(file_to_open, "r") as file_contents:
165 file_lines = file_contents.readlines()
166 if len(file_lines) > 0:
167 for index, line in enumerate(file_lines):
168 index = float(index) + 1.0
169 self.main_text.insert(index, line)
170
171 self.title(" - ".join([self.WINDOW_TITLE, self.open_file]))
172
173 self.tag_all_lines()
174
175
176 def file_save(self, event=None):
177 ...
178
179 def select_all(self, event=None):
180 self.main_text.tag_add("sel", 1.0, tk.END)
181
182 return "break"
183
184 def edit_cut(self, event=None):
185 self.main_text.event_generate("<<Cut>>")
186
187 return "break"

70CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

188
189 def edit_paste(self, event=None):
190 self.main_text.event_generate("<<Paste>>")
191 self.on_key_release()
192 self.tag_all_lines()
193
194 return "break"
195
196 def edit_undo(self, event=None):
197 self.main_text.event_generate("<<Undo>>")
198
199 return "break"
200
201 def edit_redo(self, event=None):
202 self.main_text.event_generate("<<Redo>>")
203
204 return "break"
205
206 def insert_spaces(self, event=None):
207 ...
208
209 def get_menu_coordinates(self):
210 ...
211
212 def display_autocomplete_menu(self, event=None):
213 ...
214
215 def destroy_autocomplete_menu(self, event=None):
216 ...
217
218 def insert_word(self, word, part, index):
219 ...
220
221 def adjust_floating_index(self, number):
222 ...
223
224 def focus_menu_item(self, event=None):
225 ...
226
227 def tag_keywords(self, event=None, current_index=None):
228 ...
229
230 def number_of_leading_spaces(self, line):
231 ...
232
233 def add_regex_tags(self, line_number, line_text):
234 ...
235
236 def on_key_release(self, event=None):
237 ...
238 self.update_line_numbers()
239
240 def tag_all_lines(self):
241 final_index = self.main_text.index(tk.END)
242 final_line_number = int(final_index.split(".")[0])
243
244 for line_number in range(final_line_number):
245 line_to_tag = ".".join([str(line_number), "0"])
246 self.tag_keywords(None, line_to_tag)
247
248 self.update_line_numbers()
249
250 def update_line_numbers(self):
251 self.line_numbers.configure(state="normal")
252 self.line_numbers.delete(1.0, tk.END)
253 number_of_lines = self.main_text.index(tk.END).split(".")[0]

6.3. OUR FINISHED EDITOR 71

254 line_number_string = "\n".join(str(no+1) for no in range(int(number_of_lines)))
255 self.line_numbers.insert(1.0, line_number_string)
256 self.line_numbers.configure(state="disabled")
257
258 def show_find_window(self, event=None):
259 FindPopup(self)
260
261 def highlight_matches(self, text_to_find):
262 self.main_text.tag_remove("findmatch", 1.0, tk.END)
263 self.match_coordinates = []
264 self.current_match = -1
265
266 find_regex = re.compile(text_to_find)
267 search_text_lines = self.main_text.get(1.0, tk.END).split("\n")
268
269 for line_number, line in enumerate(search_text_lines):
270 line_number += 1
271 for match in find_regex.finditer(line):
272 start, end = match.span()
273 start_index = ".".join([str(line_number), str(start)])
274 end_index = ".".join([str(line_number), str(end)])
275 self.main_text.tag_add("findmatch", start_index, end_index)
276 self.match_coordinates.append((start_index, end_index))
277
278 def next_match(self, event=None):
279 try:
280 current_target, current_target_end = self.match_coordinates[self.

current_match]
281 self.main_text.tag_remove("sel", current_target, current_target_end)
282 self.main_text.tag_add("findmatch", current_target, current_target_end)
283 except IndexError:
284 pass
285
286 try:
287 self.current_match = self.current_match + 1
288 next_target, target_end = self.match_coordinates[self.current_match]
289 except IndexError:
290 if len(self.match_coordinates) == 0:
291 msg.showinfo("No Matches", "No Matches Found")
292 else:
293 if msg.askyesno("Wrap Search?", "Reached end of file. Continue from the

top?"):
294 self.current_match = -1
295 self.next_match()
296 else:
297 self.main_text.mark_set(tk.INSERT, next_target)
298 self.main_text.tag_remove("findmatch", next_target, target_end)
299 self.main_text.tag_add("sel", next_target, target_end)
300 self.main_text.see(next_target)
301
302 def remove_all_find_tags(self):
303 self.main_text.tag_remove("findmatch", 1.0, tk.END)
304 self.main_text.tag_remove("sel", 1.0, tk.END)
305
306
307 if __name__ == "__main__":
308 editor = Editor()
309 editor.mainloop()

Listing 6.4: Our Finished Editor

6.3.1 FindPopup

__init__

After setting the title and borrowing code from our ini editor to center this window with the center_window
method, we specify that this window should be a transient, which means it will remain over the top of

72CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

our main window until closed. Next is a boolean which we use to indicate if the matches are highlighted
in the main window or not. We then define two frames: a main one for the whole window and a button
frame to hold our Buttons. We pack our Label and Entry in the main_frame and our three Buttons -
Find All, Next, and Cancel - into the button_frame, which is packed to the bottom of the main_frame.
We force focus to the Entry so that the user doesn’t have to click in it to begin typing, bind Enter to our
jump_to_next_match method, bind Escape to our cancel method, and override the window manager using
self.protocol("WM_DELETE_WINDOW", <callback>) so that our cancel method will be called when the
user closes the window.

The rest

Our findmethod sets the matches_are_highlighted flag to True to avoid repeatedly calling the highlight_matches
method of the master window, and calls highlight_matches with the text from our Entry, providing there
is something written in there and the matches are not already highlighted.

jump_to_next_match will call find() if the matches for the Entry’s text are not currently highlighted,
then pass off to the next_match method of our master window.

cancel will tell the master window to remove the tags added by the find methods and then destroy our
FindPopup instance.

matches_are_not_highlighted will set matches_are_highlighted to False if any key except Enter is
pressed within our Entry, as this indicates the word to search for has now changed and needs to be re-found.

center_window came from our Ini Editor, so see the previous chapter for an explanation.

6.3.2 Editor

__init__

With this iteration, we have an edit menu to accompany our file menu. It’s created in the same way with
cut, paste, undo, and redo buttons.

Our line numbers are handled by a disabled Text widget. It’s six characters wide, meaning it can keep
track of up to one million lines of code (I hope nobody ever encounters a million-line file however!) We
start it off at line 1 and pack it over to the left.

We create a Scrollbar and bind it to a command - scroll_text_and_line_numbers - as it will need
to scroll both of our Text widgets simultaneously. We also pair the main_text’s yscrollcommand to the
bar to ensure the bar moves when we scroll with the mouse. We pack this to the right before finally packing
our main_text so that everything is in the right place.

We finish up by adding a new tag - findmatch - to indicate matches made from our FindPopup, and
finally binding some key events.

Scrolling

scroll_text_and_line_numbers will receive different arguments depending on if it is triggered by the
Scrollbar or mouse wheel. The Scrollbar will pass a tuple of ("moveto", <fraction>) over here, so we
can directly call yview_moveto and pass over the fraction argument. Our mouse wheel will only pass the
usual event object which will raise an IndexError if we try and grab element [1] from it. Therefore we
catch this exception and use the code we saw in Chapter 2 to scroll both areas.

Our skip_event method is bound to the mouse wheel on the line_numbers. This is to stop the user
from scrolling the line numbers. The method just uses return "break" in order to do nothing but end the

6.3. OUR FINISHED EDITOR 73

chain of events triggered by scrolling.

select_all, file_open, and on_key_release

Simple changes here. We want to update the line numbers after opening a file for obvious reasons, so we
call update_line_numbers (covered later). Same deal for on_key_release. select_all adds the "sel"
tag to all of the text in our main_text area, thereby selecting it all.

The Edit Menu

As well as binding callbacks to events in tkinter, we can generate the events ourselves using event_generate
. Here we generate the <<Cut>>, <<Paste>>, <<Undo>>, and <<Redo>> events.

After pasting we want to make sure the new text is syntax-highlighted. To do this we have abstracted
some code from file_open into a new function - tag_all_lines - which we call after pasting. We also
call on_key_release directly, since we are returning "break", which will both update the line numbers and
trigger auto-completion if we paste part of a keyword. We have bound <Control-v> to this paste method
in __init__ to ensure this happens when the user pastes from the keyboard shortcut too.

update_line_numbers

In order to update the line numbers as the opened file grows, we enable our line_numbers widget, remove
all of its contents, grab the number of lines off of the end-of-file index, join each number in the range up
to our final line with a newline character, place this long string into the widget, and finally disable it again.
Note that we add 1 to each line number in our loop. This is because we don’t want our first line to be line
0 and we do want the last value included.

highlight_matches

We begin this method by removing all "findmatch" tags from our main_text widget and initialising a couple
of variables which we will use to keep track of our matches. We then compile text_to_match, which came
from the Entry in our FindPopup, as regex. This allows the user to put an actual regular expression in this
box as well as the literal text. We then split the main_text’s contents on newline characters to get a list
of every line. We enumerate over this list and use code very similar to that in our add_regex_tags to add
a "findmatch" tag to the relevant tkinter index range containing our matches. We need to add 1 to the
line_number when enumerating because a list index begins at 0 but a tkinter line number index begins
at 1.

next_match

This method makes use of current_match and match_coordinates which were both initialised and built
in our highlight_matches method. We begin by trying to remove the currently selected match’s "sel" tag
so that we only have one match selected at a time. If there isn’t one we will get an IndexError which we
will just catch and pass.

We then increment our current_match by 1 and try to grab the next set of match coordinates. If this
also throws an IndexError then we either have no matches or we are at the final match of the file. If the
len of our match_coordinates list is 0 then we have no matches, so we will show a messagebox letting
the user know. Otherwise we are at the final match in the file, so we use an askyesno to ask the user if
they want to wrap the search back to the top. If they choose "yes" we put current_match back to -1 and
re-run this next_match method.

If no error is caught we put the cursor at the start of the matched word, swap its "findmatch" tag for
the "sel" tag to select it, then use see to scroll the main_text widget enough so that the match comes
into view.

74CHAPTER 6. A PYTHON TEXT EDITOR WITH AUTOCOMPLETE AND SYNTAX HIGHLIGHTING

6.3.3 The Finished Product

We’ve now got a nice little text editor with some syntax highlighting, autocomplete, and a find menu, along
with a few standard features you would expect to be in a text editor. I’m going to leave this chapter here,
even though there are so many more things I think can be added to this project, and it’s really tempting
to just carry on forever. Feel free to play with this project to really customise it to your own preferences,
everything from colour schemes to keyboard shortcuts. Hopefully from writing this code you will have
learned how powerful a tool the tags are within tkinter, and gained an understanding of how tkinter
keeps track of indexing.

The Text widget provides a search method of its own which can be used to obtain indexes of any
matches, and supports regexes. I decided to stick with manual regex searching and processing using
find_iter and constructing the tkinter indexes to better show how they work. If you wish to re-write
some of the code to practise using the search method, please do.

6.3.4 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Use a checkbox or radio buttons to give the user the option of using either regex or plain-text search
with the FindPopup.

• Utilise the colorchooser widget to give the user the ability to change some of the colour scheme.

• Add Replace functionality to the FindPopup.

• Use regex to pull all of the function names from the opened file and provide a popup window to list
them all.

• Pick any feature you like from a text editor and try to implement it.

Chapter 7

A Pomodoro Timer

In this chapter we will be creating an app which will help people to follow the pomodoro technique. The
pomodoro technique involves concentrating on a task for 25 minute bursts, so we will be building a timer
which will count down for 25 minutes then alert the user when the time is up. It will also contain a log of
completed tasks. In this chapter we will learn about the following:

• Using threads with tkinter

• the ttk Treeview widget

• Using ttk widgets for a more native look

7.1 A Basic Timer

Figure 7.1: A Pomodoro Timer

1 import threading
2 import time
3 import datetime
4 import tkinter as tk
5 from tkinter import messagebox as msg
6

75

76 CHAPTER 7. A POMODORO TIMER

7 class CountingThread(threading.Thread):
8 def __init__(self, master, start_time, end_time):
9 super().__init__()

10 self.master = master
11 self.start_time = start_time
12 self.end_time = end_time
13
14 self.end_now = False
15 self.paused = False
16 self.force_quit = False
17
18 def run(self):
19 while True:
20 if not self.paused and not self.end_now and not self.force_quit:
21 self.main_loop()
22 if datetime.datetime.now() >= self.end_time:
23 if not self.force_quit:
24 self.master.finish()
25 break
26 elif self.end_now:
27 self.master.finish()
28 break
29 elif self.force_quit:
30 del self.master.worker
31 return
32 else:
33 continue
34 return
35
36 def main_loop(self):
37 now = datetime.datetime.now()
38 if now < self.end_time:
39 time_difference = self.end_time - now
40 mins, secs = divmod(time_difference.seconds, 60)
41 time_string = "{:02d}:{:02d}".format(mins, secs)
42 if not self.force_quit:
43 self.master.update_time_remaining(time_string)
44
45
46 class Timer(tk.Tk):
47 def __init__(self):
48 super().__init__()
49
50 self.title("Pomodoro Timer")
51 self.geometry("500x300")
52 self.resizable(False, False)
53
54 self.standard_font = (None, 16)
55
56 self.main_frame = tk.Frame(self, width=500, height=300, bg="lightgrey")
57
58 self.task_name_label = tk.Label(self.main_frame, text="Task Name:", bg="lightgrey

", fg="black", font=self.standard_font)
59 self.task_name_entry = tk.Entry(self.main_frame, bg="white", fg="black", font=

self.standard_font)
60 self.start_button = tk.Button(self.main_frame, text="Start", bg="lightgrey", fg="

black", command=self.start, font=self.standard_font)
61 self.time_remaining_var = tk.StringVar(self.main_frame)
62 self.time_remaining_var.set("25:00")
63 self.time_remaining_label = tk.Label(self.main_frame, textvar=self.

time_remaining_var, bg="lightgrey", fg="black", font=(None, 40))
64 self.pause_button = tk.Button(self.main_frame, text="Pause", bg="lightgrey", fg="

black", command=self.pause, font=self.standard_font, state="disabled")
65
66 self.main_frame.pack(fill=tk.BOTH, expand=1)
67

7.1. A BASIC TIMER 77

68 self.task_name_label.pack(fill=tk.X, pady=15)
69 self.task_name_entry.pack(fill=tk.X, padx=50, pady=(0,20))
70 self.start_button.pack(fill=tk.X, padx=50)
71 self.time_remaining_label.pack(fill=tk.X ,pady=15)
72 self.pause_button.pack(fill=tk.X, padx=50)
73
74 self.protocol("WM_DELETE_WINDOW", self.safe_destroy)
75
76 def setup_worker(self):
77 now = datetime.datetime.now()
78 in_25_mins = now + datetime.timedelta(minutes=25)
79 #in_25_mins = now + datetime.timedelta(seconds=3)
80 worker = CountingThread(self, now, in_25_mins)
81 self.worker = worker
82
83 def start(self):
84 if not hasattr(self, "worker"):
85 self.setup_worker()
86
87 self.task_name_entry.configure(state="disabled")
88 self.start_button.configure(text="Finish", command=self.finish_early)
89 self.time_remaining_var.set("25:00")
90 self.pause_button.configure(state="normal")
91 self.worker.start()
92
93 def pause(self):
94 self.worker.paused = not self.worker.paused
95 if self.worker.paused:
96 self.pause_button.configure(text="Resume")
97 self.worker.start_time = datetime.datetime.now()
98 else:
99 self.pause_button.configure(text="Pause")

100 end_timedelta = datetime.datetime.now() - self.worker.start_time
101 self.worker.end_time = self.worker.end_time + datetime.timedelta(seconds=

end_timedelta.seconds)
102
103 def finish_early(self):
104 self.start_button.configure(text="Start", command=self.start)
105 self.worker.end_now = True
106
107 def finish(self):
108 self.task_name_entry.configure(state="normal")
109 self.time_remaining_var.set("25:00")
110 self.pause_button.configure(text="Pause", state="disabled")
111 self.start_button.configure(text="Start", command=self.start)
112 del self.worker
113 msg.showinfo("Pomodoro Finished!", "Task completed, take a break!")
114
115 def update_time_remaining(self, time_string):
116 self.time_remaining_var.set(time_string)
117 self.update_idletasks()
118
119 def safe_destroy(self):
120 if hasattr(self, "worker"):
121 self.worker.force_quit = True
122 self.after(100, self.safe_destroy)
123 else:
124 self.destroy()
125
126 if __name__ == "__main__":
127 timer = Timer()
128 timer.mainloop()

Listing 7.1: A 25 Minute Timer

78 CHAPTER 7. A POMODORO TIMER

7.1.1 Timer

__init__

Everything in __init__ should look familiar now. We create a Frame which holds all of our content. We
have a Label which tells the user what to put in the Entry, a start Button, another Label holding the
time remaining, and a pause Button. Within the pomodoro technique tasks aren’t actually supposed to be
paused, but life happens, so it may come in handy. Note that the pause Button is disabled by default, since
we cannot pause a timer until it has begun.

We pack everything to fill the x direction giving us a single column layout. We use some padding to
separate widgets vertically and to pull them off of the sides of the window. We then bind a method -
safe_destroy - to the window close. This will be explained later.

setup_worker

Our "worker" is going to be a separate thread which will hold a reference to our Timer instance and call
functions on it to update its widgets. Since a thread can only be run once, we cannot just set this up in our
__init__ and then call run each time we want to start a timer, we instead need to create a new instance
each time. That’s why we have this separate method.

To set up our CountingThread we need to give it a start_time and an end_time. As this method will
only be run upon starting the timer, we can use datetime.datetime.now() to get the current time as our
start_time. Since the pomodoro technique works in 25 minute blocks, we create our end_time by adding
on a datetime.timedelta(minutes=25). We create our CountingThread with these arguments and assign
it to our Timer as self.worker.

start

If we don’t have a worker, we will set one up. We then disable our task_name_entry and enable our
pause_button, swap our start_button to a finish button, set the time Label to "25:00", and finally start
off our worker.

pause

We use not to flip the paused attribute of our worker, allowing this function to work as both a pause and
resume. If the worker is now paused we change the pause button to say "Resume" and set the current time
as our worker’s start_time. This will allow us to keep track of how long we were paused for an adjust the
end_time accordingly.

On unpausing we set the button text back to "Pause" and calculate how long we were paused for by
subtracting the start_time from the current time. This amount now needs to be added on to the worker’s
end_time to account for the time paused.

finish

Upon finishing we revert things back to their initial state, enabling our task_name_entry, disabling our
pause_button, setting our clock back to "25:00", and changing our finish button back to a start button.
We delete the reference to our worker as we no longer need it, since threads can only run once, before
alerting the user that their time is up.

finish_early

If finishing early (by clicking the finish button which replaced our start button) We just need to swap the
finish button back to a start button and set the end_now variable of our worker to True, which will set it
up to handle the rest.

7.1. A BASIC TIMER 79

update_time_remaining

To update the timer on screen we simply call set on our time_remaining_var with the time returned from
our CountingThread. We then call update_idletasks which forces the app to refresh its display. Without
this the timer may occasionally appear to miss seconds.

safe_destroy

If the user was to start the timer and then close the window they would be left with a running thread still.
In this case it seems as if the thread will throw an exception when it cannot reach the Timer instance and
exit, but it is always best to ensure you do not leave an application with active threads still remaining. This
ties up system resources and makes the user have to close them via some sort of task manager.

In our safe_destroy method we check to see if we have an assigned worker. If so this means the user
has started the timer. We set the force_quit attribute of our worker to True which will cause it to return
out of its run method and complete its duty. Before doing so it will del the reference in our Timer instance
so that we know it has successfully ended. We use self.after to call this same method again every 100
milliseconds until the worker has removed the reference to itself from our Timer, in which case we are free
to destroy the Timer.

Now let’s have a look at exactly how our CountingThread works:

7.1.2 CountingThread

__init__ and run

Hopefully __init__ is self explanitory, we are just setting up some variables. master will be our main
window, start_time and end_time will be timestamps of when the pomodoro should start and end, and
then we have 3 variables which keep track of whether or not the thread should continue running its loop.

run contains an infinite loop which first checks that none of our three variables which indicate that the
loop should stop are true. If they aren’t it will run its main loop to do some calculations and update the
GUI. If the current time is past the set end_time we will signal to the Timer to finish.

If end_now is set, this means the user is finishing the task early, so this will jump to the finish method
too. If force_quit is set then the user has closed the application window whilst the thread is still running,
so we need to remove the thread from the main Timer before returning, which will end the thread.

The final else continue is hit when the Timer is paused, so the CountingThread needs to do nothing
but still remain in its loop.

main_loop

In this method we need to find out the amount of time remaining and update the Timer’s clock appropriately.
We grab the current time with datetime.datetime.now() and check if it’s still less than our end_time.
If it is we calculate the difference. We then use divmod to get the time in minutes and seconds which we
can use with .format to create our next time string. We check once again for force_quit just to be sure
before passing the time to update_time_remaining.

7.1.3 Next Iteration

Now that we have a basic timer application working we can build up some useful features to go along with it.
Next iteration we will add a log screen to display finished tasks which have been stored in a sqlite database.

80 CHAPTER 7. A POMODORO TIMER

7.2 Keeping a Log

1 import sqlite3
2 import os
3 import functools
4 from tkinter import ttk
5
6 class CountingThread(threading.Thread):
7 ...
8
9

10 class LogWindow(tk.Toplevel):
11 def __init__(self, master):
12 super().__init__()
13
14 self.title("Log")
15 self.geometry("600x300")
16
17 self.notebook = ttk.Notebook(self)
18
19 dates_sql = "SELECT DISTINCT date FROM pymodoros ORDER BY date DESC"
20 dates = self.master.runQuery(dates_sql, None, True)
21
22 for index, date in enumerate(dates):
23 dates[index] = date[0].split()[0]
24
25 dates = sorted(set(dates), reverse=True)
26
27 for date in dates:
28 tab = tk.Frame(self.notebook)
29
30 columns = ("name", "finished", "time")
31
32 tree = ttk.Treeview(tab, columns=columns, show="headings")
33
34 tree.heading("name", text="Name")
35 tree.heading("finished", text="Full 25 Minutes")
36 tree.heading("time", text="Time")
37
38 tree.column("name", anchor="center")
39 tree.column("finished", anchor="center")
40 tree.column("time", anchor="center")
41
42 tasks_sql = "SELECT * FROM pymodoros WHERE date LIKE ?"
43 date_like = date + "%"
44 data = (date_like,)
45
46 tasks = self.master.runQuery(tasks_sql, data, True)
47
48 for task_name, task_finished, task_date in tasks:
49 task_finished_text = "Yes" if task_finished else "No"
50 task_time = task_date.split()[1]
51 task_time_pieces = task_time.split(":")
52 task_time_pretty = "{}:{}".format(task_time_pieces[0], task_time_pieces

[1])
53 tree.insert("", tk.END, values=(task_name, task_finished_text,

task_time_pretty))
54
55 tree.pack(fill=tk.BOTH, expand=1)
56
57 self.notebook.add(tab, text=date)
58
59 self.notebook.pack(fill=tk.BOTH, expand=1)
60
61
62 class Timer(tk.Tk):

7.2. KEEPING A LOG 81

63 def __init__(self):
64 ...
65
66 self.menubar = tk.Menu(self, bg="lightgrey", fg="black")
67
68 self.log_menu = tk.Menu(self.menubar, tearoff=0, bg="lightgrey", fg="black")
69 self.log_menu.add_command(label="View Log", command=self.show_log_window,

accelerator="Ctrl+L")
70
71 self.menubar.add_cascade(label="Log", menu=self.log_menu)
72 self.configure(menu=self.menubar)
73
74 ...
75
76 self.bind("<Control-l>", self.show_log_window)
77
78 ...
79
80 def setup_worker(self):
81 ...
82
83 def start(self):
84 if not self.task_name_entry.get():
85 msg.showerror("No Task", "Please enter a task name")
86 return
87
88 ...
89 self.task_finished_early = False
90 ...
91
92 def pause(self):
93 ...
94
95 def finish_early(self):
96 self.start_button.configure(text="Start", command=self.start)
97 self.task_finished_early = True
98 self.worker.end_now = True
99

100 def finish(self):
101 ...
102 if not self.task_finished_early:
103 self.mark_finished_task()
104 del self.worker
105 msg.showinfo("Pomodoro Finished!", "Task completed, take a break!")
106
107 def update_time_remaining(self, time_string):
108 ...
109
110 def add_new_task(self):
111 task_name = self.task_name_entry.get()
112 self.task_started_time = datetime.datetime.now()
113 add_task_sql = "INSERT INTO pymodoros VALUES (?, 0, ?)"
114 self.runQuery(add_task_sql, (task_name, self.task_started_time))
115
116 def mark_finished_task(self):
117 task_name = self.task_name_entry.get()
118 add_task_sql = "UPDATE pymodoros SET finished = ? WHERE task = ? and date = ?"
119 self.runQuery(add_task_sql, ("1", task_name, self.task_started_time))
120
121 def show_log_window(self, event=None):
122 LogWindow(self)
123
124 def safe_destroy(self):
125 ...
126
127 @staticmethod

82 CHAPTER 7. A POMODORO TIMER

128 def runQuery(sql, data=None, receive=False):
129 conn = sqlite3.connect("pymodoro.db")
130 cursor = conn.cursor()
131 if data:
132 cursor.execute(sql, data)
133 else:
134 cursor.execute(sql)
135
136 if receive:
137 return cursor.fetchall()
138 else:
139 conn.commit()
140
141 conn.close()
142
143 @staticmethod
144 def firstTimeDB():
145 create_tables = "CREATE TABLE pymodoros (task text, finished integer, date text)"
146 Timer.runQuery(create_tables)
147
148
149 if __name__ == "__main__":
150 timer = Timer()
151
152 if not os.path.isfile("pymodoro.db"):
153 timer.firstTimeDB()
154
155 timer.mainloop()

Listing 7.2: A Timer With a Log

7.2.1 Timer

There should be some nostalgia when working through this chapter, as a lot of code has been taken from
Chapter 2. Most notably: runQuery and firstTimeDb.

When setting up our Timer instance we now have a Menu with a button to open the log. This is also
bound to Control-L.

Upon starting a task, if there’s no task name in our task_name_entry we will inform the user with
a messagebox. You may have noticed that the task_name_entry was kind of pointless in the previous
iteration, but now we have a database connected we will need the ability to name each task. We also have
a boolean task_finished_early which will be used to mark whether or not a task was executed for the
full 25 minutes. Within our finish_early method we will set this to True which affects whether or not
the record is updated when we get to finish.

When we first start a task we add an entry into the database with the task’s name and the date/time
it started (via add_new_task). It is initially marked as not being worked on for the full 25 minutes. Once
we hit the finish method we will update the value of the finished column if the task was not finished
early (with mark_finished_task).

When creating and running our Timer instance, we will call firstTimeDb if the database file does not
exist in the same directory as the app. This is the same as we did in Chapter 2 for our Todo list.

7.2.2 LogWindow

The LogWindow consists of two widgets from the ttk set: a Notebook, which we met in Chapter 3, and a
Treeview. The Notebook is used to create a tabbed interface inside the window, and the Treeview will
organise our information into a neat little table. This saves us from having to manually lay the information
out using Labels.

7.2. KEEPING A LOG 83

We query our database for a list of dates then enumerate over them to replace each full datetime with
just the date part. We need to use date[0] for each record as sqlite returns even single items in a tuple.
We then use the somewhat strange looking dates = sorted(set(dates), reverse=True) to get a list
of unique dates in descending order. We first cast the list to a set in order to remove duplicates, then
sorted with reverse=True to order them descending. That way today’s items are always first.

We once again loop over our now-ordered dates and create a new Frame, which will function as a tab
in our Notebook, for each date. The tuple of strings will function as identifiers for each column and the
show="headings" removes the default "icon" column from the Treeview. Without this we would get a
blank first column. We use three calls to .heading to configure each column’s heading, followed by three
calls to .column to center-align our data.

Another query is run against our database to get all of the tasks which match the current date. We
iterate over the results formatting the data in a friendlier way, and getting the times rather than the dates
(since the date is written on the tab) before using insert to add the information into our Treeview. The
blank string as the first argument tells the Treeview that this record has no parent, and the tk.END tells
it to insert each record after all others. We then pack our Treeview into the tab and add the tab to our
Notebook.

Once this has been done for each date, we finish off by packing our Notebook. With that our LogWindow
is complete. Give it a go by running a couple of tasks then pressing Control-L to pop open the log.

Figure 7.2: Our Log Window

7.2.3 Next Iteration

We’ll finish up our timer by styling the Treeview using ttk’s Style objects, as well as neatening up the
main window by replacing some tk widgets with the ttk equivalent. We’ll also add delete functionality via
the log.

84 CHAPTER 7. A POMODORO TIMER

7.3 Our Finished Timer

1 ...
2
3 class CountingThread(threading.Thread):
4 ...
5
6
7 class LogWindow(tk.Toplevel):
8 def __init__(self, master):
9 ...

10 self.tab_trees = {}
11
12 style = ttk.Style()
13 style.configure("Treeview", font=(None,12))
14 style.configure("Treeview.Heading", font=(None, 14))
15
16 dates = self.master.get_unique_dates()
17
18 for index, date in enumerate(dates):
19 dates[index] = date[0].split()[0]
20
21 dates = sorted(set(dates), reverse=True)
22
23 for date in dates:
24 ...
25
26 tree.pack(fill=tk.BOTH, expand=1)
27 tree.bind("<Double-Button-1>", self.confirm_delete)
28 self.tab_trees[date] = tree
29
30 self.notebook.add(tab, text=date)
31
32 self.notebook.pack(fill=tk.BOTH, expand=1)
33
34 def confirm_delete(self, event=None):
35 current_tab = self.notebook.tab(self.notebook.select(), "text")
36 tree = self.tab_trees[current_tab]
37 selected_item_id = tree.selection()
38 selected_item = tree.item(selected_item_id)
39
40 if msg.askyesno("Delete Item?", "Delete " + selected_item["values"][0] + "?",

parent=self):
41 task_name = selected_item["values"][0]
42 task_time = selected_item["values"][2]
43 task_date = " ".join([current_tab, task_time])
44 self.master.delete_task(task_name, task_date)
45 tree.delete(selected_item_id)
46
47 class Timer(tk.Tk):
48 def __init__(self):
49 ...
50
51 style = ttk.Style()
52 style.configure("TLabel", foreground="black", background="lightgrey", font=(None,

16), anchor="center")
53 style.configure("B.TLabel", font=(None, 40))
54 style.configure("B.TButton", foreground="black", background="lightgrey", font=(

None, 16), anchor="center")
55 style.configure("TEntry", foregound="black", background="white")
56
57 ...
58
59 self.task_name_label = ttk.Label(self.main_frame, text="Task Name:")
60 self.task_name_entry = ttk.Entry(self.main_frame, font=(None, 16))

7.3. OUR FINISHED TIMER 85

61 self.start_button = ttk.Button(self.main_frame, text="Start", command=self.start,
style="B.TButton")

62 self.time_remaining_var = tk.StringVar(self.main_frame)
63 self.time_remaining_var.set("25:00")
64 self.time_remaining_label = ttk.Label(self.main_frame, textvar=self.

time_remaining_var, style="B.TLabel")
65 self.pause_button = ttk.Button(self.main_frame, text="Pause", command=self.pause,

state="disabled", style="B.TButton")
66
67 ...
68
69 self.task_name_entry.focus_set()
70
71 def setup_worker(self):
72 ...
73
74 def start(self):
75 if not self.task_name_entry.get():
76 ...
77
78 if self.task_is_duplicate():
79 msg.showerror("Task Duplicate", "Please enter a different task name")
80 return
81
82 ...
83
84 def pause(self):
85 ...
86
87 def finish_early(self):
88 ...
89
90 def finish(self):
91 ...
92
93 def update_time_remaining(self, time_string):
94 ...
95
96 def add_new_task(self):
97 ...
98
99 def mark_finished_task(self):

100 ...
101
102 def show_log_window(self, event=None):
103 ...
104
105 def safe_destroy(self):
106 ...
107
108 def get_unique_dates(self):
109 dates_sql = "SELECT DISTINCT date FROM pymodoros ORDER BY date DESC"
110 dates = self.runQuery(dates_sql, None, True)
111
112 return dates
113
114 def get_tasks_by_date(self, date):
115 tasks_sql = "SELECT * FROM pymodoros WHERE date LIKE ?"
116 date_like = date + "%"
117 data = (date_like,)
118
119 tasks = self.runQuery(tasks_sql, data, True)
120
121 return tasks
122
123 def delete_task(self, task_name, task_date):

86 CHAPTER 7. A POMODORO TIMER

124 delete_task_sql = "DELETE FROM pymodoros WHERE task = ? AND date LIKE ?"
125 task_date_like = task_date + "%"
126 data = (task_name, task_date_like)
127 self.runQuery(delete_task_sql, data)
128
129 def task_is_duplicate(self):
130 task_name = self.task_name_entry.get()
131 today = datetime.datetime.now().date()
132 task_exists_sql = "SELECT task FROM pymodoros WHERE task = ? AND date LIKE ?"
133 today_like = str(today) + "%"
134 data = (task_name, today_like)
135 tasks = self.runQuery(task_exists_sql, data, True)
136
137 return len(tasks)
138
139 @staticmethod
140 def runQuery(sql, data=None, receive=False):
141 ...
142
143 @staticmethod
144 def firstTimeDB():
145 ...
146
147
148 if __name__ == "__main__":
149 ...

Listing 7.3: Our ttk Timer

7.3.1 Timer

__init__

Our widgets have now been swapped to their ttk counterparts and the styling options have been removed
from their creation arguments. Ttk aims to keep declaration of widgets separate from their styling, meaning
they will no longer support keyword arguments like bg when creating the instances. We instead create and
use a ttk.Style object in order to adjust how our widgets look.

To achieve this we create a Style object and use its configure method to adjust style elements. Each
ttk widget will have an associated class with which it gathers styling - usually a capital T followed by the
object name, such as TButton or TLabel - but there are a couple of exceptions. The first argument to the
configure method is the name of the style class we are changing and the following keyword arguments
signify what we are changing.

When we configure TLabel in the first instance we are changing all Labels throughout our application.
This is fine for us here as we only have two which both want the same colouring. We cannot do this for the
Button class however as this affects the Buttons which appear in messageboxes.

In order to "subclass" a style we use a kind of dot-notation to specify inheritance. In our code you will
see we define B.TLabel. This style inherits from the global TLabel we adjusted and allows us to build on
top of it. In this case we want to inherit the colouring but increase the font size (the B stands for Big).
Styling in this way prevents us from having to type bg="lightgrey", fg="black" for each widget.

We go on to define a Big Button styling with B.TButton and some global Entry styling with TEntry.
Note that the font of an Entry cannot be set with the styling, so must be set upon creation as before.

To apply the non-global styles to our widgets we use the style keyword. Each one will default to
the global (TButton, TLabel, etc) and if we want to specify an inherited style we pass the full style
class as the argument. You can see this being done with our Buttons using "B.TButton" and our
time_remaining_label using "B.TLabel".

7.3. OUR FINISHED TIMER 87

We finish up our changes to __init__ by setting focus to the task_name_entry when the user opens
the app so that they don’t have to click into it to begin typing.

Managing Tasks

All of the SQL has been moved from the LogWindow into the Timer for consistency. The two queries which
should look familiar are get_unique_dates and get_tasks_by_date.

delete_task handles removing a task when it is double-clicked in the LogWindow (we will get to that
soon).

task_is_duplicate is used to check whether we have a task with the same name on the current date.
This is because we don’t have a unique identifier for each task and we want to make sure we only delete
one task at a time. If we had three tasks called "test" all done at the same time we would end up deleting
them all when double clicking one of them in the log. We call this method from our start method and
show a messagebox with an error if a task already exists.

7.3.2 LogWindow

Styling

The Treeview widget is one of the exceptions mentioned earlier when it comes to naming ttk Styles. Its
class is just "Treeview" not "TTreeview". We use the Style to configure the font size of the items within
our table. In order to change the font used in the headings we need to adjust the Treeview.Heading class.
Again both of these configures apply globally to all Treeviews in our app.

Deleting

In order to get our delete functinality to work we need to bind double-click (<Double-Button-1> in tkinter)
events to each Treeview. We also need to keep track of what Treeviews we have and which date they
belong to. We do this using a dictionary called tab_trees. The key is the date and the item is the Treeview
itself. Since our Notebook tabs are named after the dates this will allow us to access the relevant Treeview
for the current tab.

Within confirm_delete we use the tab method of our Notebook to get the "text" attribute from our
currently selected tab. This gives us the date of the tab currently being looked at. We use this date to fish
out the relevant Treeview from tab_trees and grab the selected item’s ID with selection(). We pass
this ID to the item method in order to get a dictionary containing its information. If you want to see this
dictionary add print(selected_item) after this line. The values of this item are stored within the "values"
section of the dictionary.

We use an askyesno messagebox to confirm whether the user wants to delete this record. If so we get
the task name and time from the "values", merge the date with the task time for specificity with delete
statement, and then pass this information over to delete_task in our Timer. We finish off by calling the
delete method of our tree to remove the item from the screen without having to re-build the whole page.

That’s where we’ll leave our pomodoro timer. We now have a 25 minute timer which contains a full log
of all of our tasks, all handled automatically. We can also remove any tasks which we didn’t want logged
for any reason.

7.3.3 Further Development

If you’d like to continue work on this project as an exercise, try the following:

• Add scrolling to our log for those days when we are super productive.

88 CHAPTER 7. A POMODORO TIMER

• Add a way to re-order the tabs to be either ascending or descending.

• Add a to-do list to the app and have a way to select an item and have it auto-populate the task name
entry.

• Allow the user to vary the timer length.

Chapter 8

Miscellaneous

That’s it for all of the projects within this book. I hope you’ve learned enough to start developing your own
GUI application with tkinter. I haven’t covered absolutely everything in this book since I wanted all of the
examples to be real, useful applications as opposed to small demonstrations of widgets. In this final chapter
we’ll just have a brief look at some things which I think will be useful to know but I didn’t manage to cover
in my examples.

8.1 Alternate Geometry Managers

8.1.1 Grid

Grid is a geometry manager with the same job as pack: to place your widgets into their parent. As you may
have guessed from the name, grid treats your window as a literal grid and allows you to place widgets into
a "cell" at a certain row and column. Their horizontal size is handled with colspan and the vertical size
with rowspan. Widgets will expand via the use of a sticky argument which takes a combination of "n",
"s", "e", and "w" (north, south, east, west). This will make it stick to the particular end of its cell, so a
sticky of "we" means the widget will stretch horizontally within its assigned cell. Widgets default to the
center of their cell if there is no sticky value set.

We can grid widgets in any order we like, providing we specify their values correctly, since each one is
assigned to a specific cell (or group of cells). With pack the order in which we pack our widgets defines
their position. For example, when we are packing two Buttons with side=tk.BOTTOM, the first Button
which is packed will appear at the very bottom, with the second above it. When adding more Buttons to
the bottom of this window, we must ensure we pack them after the first one if we want to keep it at the
bottom, whereas with grid we can just specify a smaller row value, and then grid it whenever we like.

The other main advantage of grid is that we don’t have to use Frames if we wish to specify two sides.
For example, take our find window from the text editor in chapter 6. In order to place our Buttons both at
the bottom of the window and side-by-side we had to use a Frame packed to the bottom, then pack each
widget to the left. If using grid we wouldn’t need the extra Frame, we could simply give all of the Buttons
the same row.

The reason I don’t tend to use grid is simply because I find it unflexible when developing iteratively. If
we accidentally grid a widget in the same row and column as another it will just overtake that cell, hiding
the first widget. This means each time we want to add something we would potentially have to adjust the
row and column of multiple other widgets.

I also find pack to be typically more readable than grid. Instead of having to compare numbers across
multiple widgets to get a mental picture of what goes where, we have words like "bottom" and "left" right
there in the code.

89

90 CHAPTER 8. MISCELLANEOUS

Despite my opinions, grid is a powerful tool, so if you feel it is better for the job than pack then I
encourage you to use it. For some great examples with pictures check out the tkinterbook page over at
effbot.org/tkinterbook/grid.htm.

8.1.2 Place

If you want to specify exact coordinates within the window to put something, place will do that for you.
It’s generally a pain to lay a window out with specifics, and there’s much less room for the widgets to adapt
with the window size, so place sees very little use.

To put a widget at (100, 300) within a window, use widget.place(x=100, y=300). Alternatively, you
can use relx and rely to place a widget relative to its parent. relx=0.5, rely=0.5, anchor=tk.CENTER
will keep a widget completely central in its parent.

placed widgets will overlap anything underneath them. This can be good or bad depending on your
intentions.

8.2 Tk Widgets

There are still some widgets which I didn’t manage to fit into any of the example apps. We’ll have a brief
overview of them here:

8.2.1 Checkbutton

A Checkbutton is essentially a checkbox with an attached label. The label is set with the text argument
much like the other tkinter widgets. We can query whether or not the box has been checked by attaching
a tkinter variable to it (StringVar, IntVar etc) with variable=self.my_variable. By deault the value
of this variable will be 1 when checked and 0 when not. We can change this with the onvalue and offvalue
arguments. Changing the linked variable directly will update the associated Checkbutton automatically.

Much like a normal Button, a Checkbutton can take a command argument to call a function whenever
it is pressed.

8.2.2 Radiobutton

Somewhat similar to a Checkbutton, a Radiobutton is used to represent one choice out of a group of
possible options. To group Radiobuttons, point them all to the same tkinter variable using the variable
keyword. Each Radiobutton can then have its own unique value assigned with the value keyword, which
becomes the value of the linked variable when this Radiobutton is selected.

Once again, the text argument will put a label beside the button. We can also bind a function via
command.

By default a Radiobutton will look like it does on a standard HTML page (circular icon next to text
with a dot inside the selected option). If you wish instead to have each option look like a regular button
with the chosen option pressed in, setting the indicatoron argument to false will do this.

8.2.3 Checkbuttons and Radiobuttons in a Menu

A Menu can take contain Checkbuttons and Radiobuttons as well as the normal Buttons we used in
our projects. These are added with .add_checkbutton(label="check", variable=self.checked) and
.add_radiobutton(label="radio", variable=self.radio). The buttons will be linked to the supplied
tkinter variable just like regular Checkbuttons and Radiobuttons.

8.3. TTK WIDGETS 91

8.2.4 OptionMenu

An OptionMenu is much like an HTML dropdown box. Unlike other tkinter widgets the OptionMenu
doesn’t rely on keyword arguments when creating an instance. Instead, instances are created like this:
om = OptionMenu(parent, variable, "option1", "option2", "option3"). In this case parent is your
root window, variable is a tkinter variable, and all of the following arguments are the options to choose
from in the box.

If developing for Windows or OSX I would recommend using the ttk version of OptionMenu (and any
ttk-supported widget to be honest), since it looks so much nicer. One thing to note with this version is
the third argument will become the default. To clarify, we create an instance with OptionMenu(parent,
variable, "default choice", "choice 1", "choice2"). The default choice will not appear in the list
of available options unless re-declared as the 4th or higher argument, eg (parent, variable, "medium",
"low", "medium", "high").

A nicer way to specify the potential choices is to create a tuple and then unpack it when creating the
OptionMenu, eg (parent, variable, *choices).

8.3 Ttk Widgets

8.3.1 Combobox

A Combobox is a combination of an Entry and an OptionMenu. The user can either pick an option from
the dropdown list or type their own. This is sometimes called a "select2" in the web development world.
Unfortunately, typing in the Entry does not filter the values in the dropdown by default, so if that is your
intention you will need to implement this manually. This can either be done by binding to the <KeyRelease>
event, or by using the postcommand argument to bind a function which will run when the user clicks the
dropdown arrow.

A Combobox can be instantiated by passing the parent as the first argument followed by the values as
a sequence of strings. For example: Combobox(parent, values=("one", "two", "three")). This widget
can also be bound to a StringVar with the textvariable argument.

8.3.2 Progressbar

When running something which may take a long time we can use a Progressbar to let the user know that
the application has not crashed.

If you have a quantifiable end goal, such as a number of open files to process, you can use a determinate
Progressbar to show exactly how far through the process your application currently is. Determinate is
the default mode of the Progressbar widget. Let’s say you had a big list of open files to process - you
would show the progress like so: pb = Progressbar(parent, maximum=len(files)). You now have a
Progressbar with step count equal to the length of your file list. After processing each file, you can call
pb.step() to increment progress by one. Once the Progressbar has reached its maximum it will return to
empty, so you should destroy it (or its parent if it has a separate window).

If you have no idea how much work there is to do but still want to signal to the user that the app is
processing, there is the mode="indeterminate" argument. This will create one of those animations where
a small block bounces left and right until processing is complete. To begin this animation call pb.start(),
and use pb.stop() when processing is complete (or use destroy() as before).

The length of a Progressbar can be set with the length argument, and for some reason you can also
set it to vertical with orient=tk.VERTICAL.

92 CHAPTER 8. MISCELLANEOUS

8.4 Final Words

With that, we have come to the end of this book. Thanks very much for reading. I would love to hear your
thoughts on this book - you can find me @Dvlv292 on twitter or Dvlv on reddit. Any comments, questions,
or suggestions on the source code can be handled through Github. I am more than happy to alter the code
and this book in order to improve it for people new to tkinter. As always in programming - nothing is ever
finished!

	Introduction
	Who this book is aimed at
	How to get the most out of this book
	About tkinter
	Installing
	What is it anyway?
	Why write about tkinter?
	I heard tkinter is ugly

	Hello World
	Basic Example
	Using Classes

	A To-Do List
	A Basic List App
	__init__
	add_item
	Next Iteration

	Scrolling and Deleting
	Canvases and Frames
	__init__
	Handling Tasks
	Adjusting the canvas
	Mouse scrolling
	Next Iteration

	Permanent Storage
	runQuery
	firstTimeDb
	__init__
	add_task and remove_task
	save_task and load_tasks
	The final app
	Further Development

	A Multi-Language Translation Tool
	A Single-Translation Interface
	requests
	__init__
	translate
	copy_to_clipboard
	Next Iteration

	Three Tabs and a Menu
	__init__
	translate
	add_portuguese_tab
	Next Iteration

	A Truly Dynamic App
	The LanguageTab
	The TranslateBook
	NewLanguageForm
	Running this version
	Further Development

	A Point-and-Click Game
	The Initial Concept
	GameScreen
	Game
	Playing the Game
	Next Iteration

	Our Refined Point-and-Click game
	GameScreen
	Game
	Further Development

	Ini File Editor
	Basic View and Edit Functionality
	__init__
	file_open
	parse_ini_file
	display_section_contents
	file_save
	Next Iteration

	Now With Caching and Resizing
	__init__ and frame_height
	parse_ini_file
	display_section_contents
	file_save
	Running
	Next Iteration

	Our finished Ini Editor
	CentralForm
	AddSectionForm and AddItemForm
	IniEditor
	Further Development

	A Python Text Editor With Autocomplete and Syntax Highlighting
	Basic Functionality and Autocompletion
	__init__
	Handling Files
	Autocompletion
	Spaces over Tabs!?
	Next Iteration

	Syntax Highlighting
	__init__
	Regexes Explained
	file_open
	tag_keywords
	display_autocomplete_menu, number_of_leading_spaces, and on_key_release
	Next Iteration

	Our Finished Editor
	FindPopup
	Editor
	The Finished Product
	Further Development

	A Pomodoro Timer
	A Basic Timer
	Timer
	CountingThread
	Next Iteration

	Keeping a Log
	Timer
	LogWindow
	Next Iteration

	Our Finished Timer
	Timer
	LogWindow
	Further Development

	Miscellaneous
	Alternate Geometry Managers
	Grid
	Place

	Tk Widgets
	Checkbutton
	Radiobutton
	Checkbuttons and Radiobuttons in a Menu
	OptionMenu

	Ttk Widgets
	Combobox
	Progressbar

	Final Words

